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Abstract: Artificial bee colony (ABC) optimisation algorithm is relatively a 
simple and recent population-based probabilistic approach for global 
optimisation. ABC has been outperformed over some nature inspired 
algorithms (NIAs) when tested over benchmark as well as real world 
optimisation problems. The solution search equation of ABC is significantly 
influenced by a random quantity which helps in exploration at the cost of 
exploitation of the search space. In the solution search equation of ABC, there 
is an enough chance to skip the true solution due to large step sizes. In order to 
balance the diversity and convergence capability of the ABC, in this paper, a 
power law-based local search strategy is proposed and integrated with ABC. 
The proposed strategy is named as power law-based local search in ABC 
(PLABC). In the PLABC, new solutions are generated around the best solution 
and it helps to enhance the exploitation capability of ABC. Further, to  
improve the exploration capability, numbers of scout bees are increased. The 
experiments on 24 test problems of different complexities show that the 
proposed strategy outperforms the basic ABC and recent variants of ABC, 
namely, Gbest guided ABC (GABC), best-so-far ABC (BSFABC) and modified 
ABC in most of the experiments. 
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1 Introduction 

Swarm intelligence has become an emerging and interesting area in the field of nature 
inspired techniques that is used to solve optimisation problems during the past decade. It 
is based on the collective behaviour of social creatures. Swarm-based optimisation 
algorithms find solution by collaborative trial and error process. Social creatures utilises 
their ability of social learning to solve complex tasks. Peer to peer learning behaviour of 
social colonies is the main driving force behind the development of many efficient 
swarm-based optimisation algorithms. Researchers have analysed such behaviours and 
designed algorithms that can be used to solve non-linear, non-convex or discrete 
optimisation problems. Previous research (Dorigo and Di Caro, 1999; Kennedy and 
Eberhart, 1995; Price et al., 2005; Vesterstrom and Thomsen, 2004) have shown that 
algorithms based on swarm intelligence have great potential to find solutions of real 
world optimisation problems. The algorithms that have emerged in recent years include 
ant colony optimisation (ACO) (Dorigo and Di Caro, 1999), particle swarm optimisation 
(PSO) (Kennedy and Eberhart, 1995), bacterial foraging optimisation (BFO) (Passino, 
2002), etc. 

Artificial bee colony (ABC) optimisation algorithm introduced by Karaboga (2005) is 
a recent addition in this category. This algorithm is inspired by the behaviour of honey 
bees when seeking a quality food source. Like any other population-based optimisation 
algorithm, ABC consists of a population of potential solutions. The potential solutions are 
food sources of honey bees. The fitness is determined in terms of the quality (nectar 
amount) of the food source. ABC is relatively a simple-, fast- and population-based 
stochastic search technique in the field of nature inspired algorithms (NIAs). 

There are two fundamental processes which drive the swarm to update in ABC: the 
variation process, which enables exploring different areas of the search space, and the 
selection process, which ensures the exploitation of the previous experience. However, it 
has been shown that the ABC may occasionally stop proceeding toward the global 
optimum even though the population has not converged to a local optimum (Karaboga 
and Akay, 2009). It can be observed that the solution search equation of ABC algorithm 
is good at exploration but poor at exploitation (Zhu and Kwong, 2010). Therefore, to 
maintain the proper balance between exploration and exploitation behaviour of ABC, it is 
highly required to develop a local search (LS) approach in the basic ABC to exploit the 
search region. In this paper, a LS strategy based on power law-based control parameter, is 
proposed and incorporated with ABC. In the proposed strategy, the step sizes are 
controlled by a parameter which is a power law function of iteration counter. The 
proposed strategy is used for finding the global optima of a unimodal and/or multimodal 
functions by iteratively reducing the step size in updating process of the candidate 
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solution in the search space within which the optima is known to exist. Further, to 
improve the diversity of the algorithm, numbers of scout bees are increased. Further, the 
strategy proposed in this paper is also compared to recent variants of ABC, named, Gbest 
guided artificial bee colony (GABC) algorithm (Zhu and Kwong, 2010), best-so-far 
artificial bee colony (BSFABC) (Banharnsakun et al., 2011) and modified artificial bee 
colony (MABC) (Akay and Karaboga, 2012). 

Rest of the paper is organised as follows: Section 2 describes a brief review on 
memetic approach. Basic ABC is explained in Section 3. Power law-based local search 
(PLLS) is proposed and described in Section 4. In Section 5, PLLS is incorporated with 
ABC. In Section 6, performance of the proposed strategy is analysed. Finally, in  
Section 7, paper is concluded. 

2 Brief review on memetic approach 

In the field of optimisation, memetic computing is an interesting approach to solve the 
complex problems (Ong et al., 2010). Memetic is synonymous to memes which can be 
described as “instructions for carrying out behavior, stored in brains” (Susan, 1999). 
Memetic computing is defined as “... a paradigm that uses the notion of memes as units of 
information encoded in computational representations for the purpose of problem 
solving” (Ong et al., 2010). Memetic computing can be seen then as a subject which 
studies complex structures composed of simple modules (memes) which interact and 
evolve adapting to the problem in order to solve it (Neri et al., 2012). A good survey on 
memetic computing can be found in Ong et al. (2010), Neri et al. (2012), and Chen et al. 
(2011). Memetic algorithms (MAs) can be seen as an aspect of the realisation or 
condition-based subset of memetic computing (Chen et al., 2011). The term ‘MA’  
was first presented by Moscato (1989) as a population-based algorithm having local 
improvement strategy for search of solution. MAs are hybrid search methods that are 
based on the population-based search framework (Fogel and Michalewicz, 1997; Eiben 
and Smith, 2003) and neighbourhood-based LS framework (Hoos and Stützle, 2005). 
Popular examples of population-based methods include genetic algorithms (GAs) and 
other evolutionary algorithms while Tabu search and simulated annealing (SA) are two 
prominent LS representatives. The main role of MA in evolutionary computing is to 
provide a LS to establish exploitation of the search space. LS algorithms can be 
categorised as (Neri et al., 2012): 

• stochastic or deterministic behaviour 

• single solution or multi-solution-based search 

• steepest descent or greedy approach-based selection. 

A LS is thought of as an algorithmic structure converging to the closest local optimum 
while the global search should have the potential of detecting the global optimum. 
Therefore, to maintain the proper balance between exploration and exploitation behaviour 
of an algorithm, it is highly required to incorporate a LS approach in the basic 
population-based algorithm to exploit the search region. 

Generally, population-based search algorithms like GA (Goldberg, 1989), evolution 
strategy (ES) (Beyer and Schwefel, 2002), differential evolution (DE) (Price et al., 2005), 
ACO (Dorigo and Di Caro, 1999), PSO (Kennedy, 2006), artificial immune system 
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(Dasgupta, 2006), ABC (Karaboga, 2005), etc., are stochastic in nature (Yang, 2010). In 
recent years, researchers hybridised the LS procedures with the population-based 
algorithms to improve the exploitation capability of the population-based algorithms 
(Neri and Tirronen, 2009; Caponio et al., 2009; Mininno and Neri, 2010; Wang et al., 
2009; Valenzuela and Smith, 2002; Ishibuchi et al., 2003; Ong et al., 2003). Further, 
MAs have been successfully applied to solve a wide range of complex optimisation 
problems like multi-objective optimisation (Knowles et al., 2008; Goh et al., 2009), 
continuous optimisation (Ong et al., 2003; Ong and Keane, 2004), combinatorial 
optimisation (Ishibuchi et al., 2003; Tang et al., 2009; Repoussis et al., 2009), 
bioinformatics (Richer et al., 2009; Gallo et al., 2009), flow shop scheduling (Ishibuchi  
et al., 2003), scheduling and routing (Brest et al., 2006), machine learning (Ishibuchi and 
Yamamoto, 2004; Caponio et al., 2007; Ruiz-Torrubiano and Suárez, 2010), etc. 

Ong and Keane (2004) introduced strategies for MAs control that decide at runtime 
which LS method is to be chosen for the local refinement of the solution. Further, they 
proposed multiple LS procedures during a MA search in the sprit of Lamarckian learning. 
Further, Ong et al. (2006) described a classification of memes adaptation in adaptive MAs 
on the basis of the mechanism used and the level of historical knowledge on the memes 
employed. Then the asymptotic convergence properties of the adaptive MAs are analysed 
according to the classification. Nguyen et al. (2009) presented a novel probabilistic 
memetic framework that models MAs as a process involving the decision of embracing 
the separate actions of evolution or individual learning and analysed the probability of 
each process in locating the global optimum. Further, the framework balances evolution 
and individual learning by governing the learning intensity of each individual according 
to the theoretical upper bound derived while the search progresses. 

In past, very few efforts have been done to incorporate a LS with ABC. Kang et al. 
(2011b) proposed a Hooke Jeeves artificial bee colony (HJABC) algorithm for numerical 
optimisation. In HJABC, authors incorporated a LS technique which is based on  
Hooke Jeeves (HJ) method (Hooke and Jeeves, 1961) with the basic ABC. Further, 
Mezura-Montes and Velez-Koeppel (2010) introduced a variant of the basic ABC named 
elitist ABC. In their work, the authors integrated two LS strategies. The first LS strategy 
is used when 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% and 97% of function 
evaluations have been completed. The purpose of this is to improve the best solution 
achieved so far by generating a set of 1,000 new food sources in its neighbourhood. The 
other LS works when 45%, 50%, 55%, 80%, 82%, 84%, 86%, 88%, 90%, 91%, 92%, 
93%, 94%, 95%, 96%, 97%, 98%, and 99% of function evaluations have been reached. 

Fister et al. (2012) proposed a memetic ABC for large-scale global optimisation. In 
the proposed approach, ABC is hybridised with two LS heuristics: the Nelder-Mead 
algorithm (NMA) (Rao and Rao, 2009) and the random walk with direction exploitation 
(RWDE) (Rao and Rao, 2009). The former is attended more towards exploration, while 
the latter more towards exploitation of the search space. The stochastic adaptive rule as 
specified by Cotta and Neri (2012) is applied for balancing the exploration and 
exploitation. 

Kang et al. (2011b) presented a novel hybrid HJABC algorithm with intensification 
search based on the HJ pattern search and the ABC. In the HJABC, two modification are 
proposed, one is the fitness (fiti) calculation function of basic ABC is changed and 
calculated by equation (1) and another is that a HJ LS is incorporated with the basic 
ABC. 
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= − +
−

 (1) 

here pi is the position of the solution in the whole population after ranking,  
SP ∈ [1.0, 2.0] is the selection pressure. A medium value of SP = 1.5 can be a good 
choice and NP is the number of solutions. 

Further Kang et al. (2011a) described a Rosenbrock artificial bee colony (RABC) that 
combines Rosenbrock’s rotational direction method with ABC for accurate numerical 
optimisation. In RABC, exploitation phase is introduced in the ABC using Rosenbrock’s 
rotational direction method. 

Sharma et al. (2012) introduced group social learning in ABC algorithm in which 
they proposed structured swarm-based learning to balance the exploration and 
exploitation in the swarm. 

3 ABC algorithm 

The ABC algorithm is relatively recent swarm intelligence-based algorithm. The 
algorithm is inspired by the intelligent food foraging behaviour of honey bees. In ABC, 
each solution of the problem is called food source of honey bees. The fitness is 
determined in terms of the quality of the food source. In ABC, honey bees are classified 
into three groups namely employed bees, onlooker bees and scout bees. The number of 
employed bees are equal to the onlooker bees. The employed bees are the bees which 
searches the food source and gather the information about the quality of the food source. 
Onlooker bees which stay in the hive and search the food sources on the basis of the 
information gathered by the employed bees. The scout bee, searches new food sources 
randomly in places of the abandoned foods sources. Similar to the other population-based 
algorithms, ABC solution search process is an iterative process. After, initialisation of the 
ABC parameters and swarm, it requires the repetitive iterations of the three phases 
namely employed bee phase, onlooker bee phase and scout bee phase. Each of the phase 
is described as follows: 

3.1 Initialisation of the swarm 

The parameters for the ABC are the number of food sources, the number of trials after 
which a food source is considered to be abandoned and the termination criteria. In the 
basic ABC, the number of food sources are equal to the employed bees or onlooker bees. 
Initially, a uniformly distributed initial swarm of SN food sources where each food source 
xi(i = 1, 2,…,SN) is a D-dimensional vector, generated. Here D is the number of variables 
in the optimisation problem and xi represent the ith food source in the swarm. Each food 
source is generated as follows: 

( )min max min[0, 1]ij j j jx x rand x x= + −  (2) 

here xminj and xmaxj are bounds of xi in jth direction and rand[0, 1] is a uniformly 
distributed random number in the range [0, 1]. 
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3.2 Employed bee phase 

In the employed bee phase, employed bees modify the current solution (food source) 
based on the information of individual experience and the fitness value of the new 
solution. If the fitness value of the new solution is higher than that of the old solution, the 
bee updates her position with the new one and discards the old one. The position updates 
equation for ith candidate in this phase is 

( )ij ij ij ij kjv x x x= + −φ  (3) 

here k ∈ {1, 2,…,SN} and j ∈ {1, 2,…,D} are randomly chosen indices. k must be 
different from i. φij is a random number between [–1, 1]. 

3.3 Onlooker bees phase 

After completion of the employed bees phase, the onlooker bees phase starts. In onlooker 
bees phase, all the employed bees share the new fitness information (nectar) of the new 
solutions (food sources) and their position information with the onlooker bees in the hive. 
Onlooker bees analyse the available information and select a solution with a probability 
probi related to its fitness. The probability probi may be calculated using following 
expression (there may be some other but must be a function of fitness): 

1

 i
i SN

ii

fitnessprob
fitness

=

=
∑

 (4) 

here fitnessi is the fitness value of the solution i. As in the case of the employed bee, it 
produces a modification on the position in its memory and checks the fitness of the 
candidate source. If the fitness is higher than that of the previous one, the bee memorises 
the new position and forgets the old one. 

3.4 Scout bees phase 

If the position of a food source is not updated up to predetermined number of cycles, then 
the food source is assumed to be abandoned and scout bees phase starts. In this phase, the 
bee associated with the abandoned food source becomes scout bee and the food source is 
replaced by a randomly chosen food source within the search space. In ABC, 
predetermined number of cycles is a crucial control parameter which is called limit for 
abandonment. 

Assume that the abandoned source is xi. The scout bee replaces this food source by a 
randomly chosen food source which is generated as follows: 

( )min max min[0, 1] ,  for {1, 2, , }ij j j jx x rand x x j D= + − ∈ …  (5) 

where xminj and xmaxj are bounds of xi in jth direction. 

3.5 Main steps of the ABC algorithm 

Based on the above explanation, it is clear that there are three control parameters in  
ABC search process: The number of food sources SN (equal to number of onlooker or 
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employed bees), the value of limit and the maximum number of iterations. The  
pseudo-code of the ABC is shown in Algorithm 1 (Karaboga and Akay, 2009). 
Algorithm 1 ABC algorithm 

Initialize the parameters; 
while Termination criteria is not satisfied do 
 Step 1: Employed bee phase for generating new food sources. 
 Step 2: Onlooker bees phase for updating the food sources depending on their nectar 

amounts. 
 Step 3: Scout bee phase for discovering the new food sources in place of abandoned food 

sources. 
 Step 4: Memorize the best food source found so far. 
end while 
Output the best solution found so far. 

4 Power law-based local search 

LS algorithms can be seen as a population-based stochastic algorithms, where main task 
is to exploit the available knowledge about a problem. Generally, in LS algorithms some 
or all individuals in the population are improved by some LS method. LS algorithms are 
basically designed to incorporate a LS strategy between iterations of a population-based 
search algorithm. In this way, the population-based global search algorithms are 
hybridised with LS algorithms and the hybridised algorithms named as MAs. In MAs, the 
global search capability of the main algorithm explore the search space, trying to identify 
the most promising search space regions while the LS part scrutinises the surroundings of 
some initial solution, exploiting it in this way. 

The LS algorithms can be seen as a population-based stochastic algorithms, where 
main task is to exploit the available knowledge about a problem. Therefore, steps sizes 
play an important role in exploiting the identified region. Hence, in this paper, a LS 
strategy, based on power law, is proposed and named PLLS. In the proposed strategy, the 
step sizes, require to update an individual, is iteratively decreased to exploit the search 
area in the vicinity of the best candidate solution. In the proposed search strategy, the  
step sizes are forced to decrease using a parameter u which is a power law function  
of iteration counter. The position update equation of an ith individual is shown in  
equation (6): 

1( 1) ( ) sign [0, 1] ( ),
2ij ijx t x t rand u t⎛ ⎞+ = + − ×⎜ ⎟

⎝ ⎠
αβ  (6) 

here α is the step size control parameter and β is the social learning component which 

depends upon the global search algorithm. The 1sign [0, 1]
2

rand⎛ ⎞−⎜ ⎟
⎝ ⎠

 essentially provides 

a random sign or direction while u is a parameter which is a power law function of 
iteration counter (t) and computed using equation (7): 

( ) , (1 3),λu t t λ−= < ≤  (7) 
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Here t is the iteration counter. Due to equation (7), as the iteration counter increases,  
u decreases results the decrease in step length. In this way, u calculated through  
equation (7), helps to exploit the search space through iterations. The step size to update a 

candidate solution is 1sign [0, 1]
2

rand u⎛ ⎞⎛ ⎞× − ×⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
β α  a random walk process with a 

power-law distribution with decreasing step-length and having a heavy tail. Figure 1 
shows a power law graph, being used to demonstrate u and an example of the PLLS 
random walk used to update an individual, using ABC as a global search algorithm  
(β = (xij – xkj)), in two dimension search space for Beale function (f9). It is clear from 
Figure 1(b) that the steps sizes provided by PLLS are stochastic and decreasing in nature 
and therefore PLLS is expected to provide a better exploitation process in basic ABC. 

Figure 1 (a) Power-law graph, being used to demonstrate u (b) Position’s of an individual based 
on PLLS in two dimension search space (see online version for colours) 

 
(a) 

 
(b) 
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The pseudo-code of the proposed PLLS is shown in Algorithm 2. In Algorithm 2, ε 
determines the termination of LS. 
Algorithm 2 PLLS strategy 

Input optimization function Minf(x), α and λ; 

Select the best solution xbest in the swarm; 

Initialize a counter t = 1; 

while (u > ε) do 

 Compute u(t) = t–λ; 

 Generate a new solution xnew using u(t) and α by equation (6). 

 Calculate f(xnew). 

 if f(xnew) < f(xbest) then 

  xbest = xnew; 

 end if 

 t = t + 1; 

end while 

5 Power law-based local search in artificial bee colony 

Exploration and exploitation are the two important characteristics of the population-based 
optimisation algorithms such as GA (Goldberg, 1989), PSO (Kennedy and Eberhart, 
1995), DE (Storn and Price, 1997), BFO (Passino, 2002) and so on. In these optimisation 
algorithms, the exploration refers to the ability to investigate the various unknown 
regions in the solution space to discover the global optimum. While, the exploitation 
refers to the ability to apply the knowledge of the previous good solutions to find better 
solutions. In practice, the exploration and exploitation contradict with each other, and in 
order to achieve better optimisation performance, the two abilities should be well 
balanced. Karaboga and Akay (2009) tested different variants of ABC for global 
optimisation and found that the ABC shows poor performance and remains inefficient in 
exploring the search space. In ABC, any potential solution updates itself using the 
information provided by a randomly selected potential solution within the current  
swarm. In this process, a step size which is a linear combination of a random number  
φij ∈ [–1, 1], current solution and a randomly selected solution are used. Now the quality 
of the updated solution highly depends upon this step size. If the step size is too large, 
which may occur if the difference of current solution and randomly selected solution is 
large with high absolute value of φij, then updated solution can surpass the true solution 
and if this step size is too small then the convergence rate of ABC may significantly 
decrease. A proper balance of this step size can balance the exploration and exploitation 
capability of the ABC simultaneously. But, since this step size consists of random 
component so the balance cannot be done manually. 

The exploitation capability can be enhanced by incorporation of a LS algorithm with 
the ABC algorithm. Therefore, in this paper, to balance the diversity and convergence 
ability of ABC, four modifications are proposed: 
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1 To enhance the exploitation capability of ABC, PLLS strategy (described in  
Section 3) is incorporated with the basic ABC. In this way, the situation of skipping 
true solution can be avoided while maintaining the speed of convergence. The PLLS 
strategy, in case of large step sizes, can search within the area that is jumped by the 
basic ABC. 

2 To enhance the exploration capability, the number of scout bees are increased. This 
modification avoids situation of stagnation of the algorithm. Therefore, in this paper, 
all the bees who crosses the limit boundary are treated as the scout bees. 

3 In the basic ABC, food sources are randomly initialised by the scout bees in the 
static range (solution search space). Therefore, there is a chance to jump outside of 
the already shrunken search space and the knowledge of the current reduced space 
(converged swarm) would be lost. Hence, in this paper, the scout bees randomly 
initialise the abandoned food sources by using current interval in the swarm which is, 
as the search does progress, increasingly smaller than the corresponding initial range. 
Now the following equation is used to update a food source xi: 

( )[0, 1] – ,ij j j jx a rand b a= +  

 here [a, b] is the shrunken search space. 

4 In the basic ABC, the food sources are updated, as shown in equation (3), based on 
the random step size. Inspired by PSO (Kennedy and Eberhart, 1995) and GABC 
(Zhu and Kwong, 2010) algorithms which, in order to improve the exploitation,  
take advantage of the information of the global best solution to guide the search  
of candidate solutions, the solution search equation described by equation (3) is 
modified as follows (Zhu and Kwong, 2010): 

( ) ( )( 1) ( ) ( ) – ( ) ( ) – ( ) ,ij ij ij ij kj ij bestj ijx t x t x t x t ψ x t x t+ = + +φ  

 here, ψij is a uniform random number in [0, C], where C is a non-negative constant. 
For details description refer to Zhu and Kwong (2010). 

In this paper, the PLLS strategy is incorporate with the basic ABC to improve the 
exploitation capability. In the proposed LS strategy, the position update equation of an ith 
food source is shown in equation (8). 

( ) 1( 1) ( ) ( ) – ( ) sign [0, 1] – ( ),
2ij ij ij kjx t x t x t x t rand u t⎛ ⎞+ = + ×⎜ ⎟

⎝ ⎠
α  (8) 

here, symbols have their usual meanings, β = (xij – xkj) is the social learning component of 
the ABC algorithm and ith solution is the best solution in the current swarm. The 
proposed strategy in ABC is hereby, named as power law-based local search in artificial 
bee colony (PLABC). The pseudo-code of the proposed PLLS strategy with ABC is 
shown in Algorithm 3. In PLLS, only the best particle of the current swarm updates itself 
in its neighbourhood. 
Algorithm 3 PLLS strategy with ABC 

Input optimization function Minf(x), α and λ; 
Select the best solution xbest in the swarm; 
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Initialize a counter t = 1; 
while (u > ε) do 
 Compute u(t) = t–λ; 
 Generate a new solution xnew using u(t) and α by Algorithm 4. 
 Calculate f(xnew). 
 if f(xnew) < f(xbest) then 
  xbest = xnew; 
 end if 
 t = t + 1; 
end while 

In Algorithms 3 and 4, ε is the termination criteria of the proposed LS. pr is a perturbation 
rate (a number between 0 and 1) which controls the amount of perturbation in the best 
solution, U(0, 1) is a uniform distributed random number between 0 and 1, D is the 
dimension of the problem and xk is a randomly selected solution within swarm. See 
Section 5.2 for details of these parameter settings. 

The proposed PLABC consists of four phases: employed bee phase, onlooker bee 
phase, scout bee phase and PLLS. The pseudo-code of the PLABC algorithm is shown in 
Algorithm 5. 
Algorithm 4 New solution generation 

Input u, α and best solution xbest; 
for j = 1 to D do 
 if U(0, 1) > pr then 
  

( ) 1– sign [0,1] – ;
2newj bestj bestj kjx x x x rand u⎛ ⎞= + × ×⎜ ⎟

⎝ ⎠
α  

 else 
  xnewj = xbestj; 
 end if 
end for 
Return xnew 

Algorithm 5 Power law-based local search in artificial bee colony 

Initialize the parameters; 
while Termination criteria do 
 Step 1: Employed bee phase for generating new food sources. 
 Step 2: Onlooker bees phase for updating the food sources depending on their nectar 

amounts. 
 Step 3: Scout bee phase for discovering the new food sources in place of abandoned food 

sources. 
 Step 4: Apply PLLS strategy using Algorithm 3. 
end while 
Print best solution. 
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Table 1 Test problems (continued) 
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Table 1 Test problems (continued) 
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Table 1 Test problems (continued) 
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6 Experimental results and discussion 

6.1 Test problems under consideration 

In order to analyse the performance of PLABC, 24 different global optimisation problems 
(f1 to f24) are selected (listed in Table 1). These are continuous optimisation problems and 
have different degrees of complexity and multimodality. Test problems f1 to f11 and f18 to 
f24 are taken from Ali et al. (2005) and test problems f12 to f17 are taken from Suganthan 
(2005) with the associated offset values. 

6.2 Experimental setting 

To prove the efficiency of PLABC, it is compared with ABC and recent variants of ABC 
named GABC (Zhu and Kwong, 2010), BSFABC (Banharnsakun et al., 2011) and MABC 
(Akay and Karaboga, 2012). To test PLABC, ABC, GABC, BSFABC and MABC over 
considered problems, following experimental setting is adopted: 

• Colony size NP = 50 (Diwold et al., 2011; El-Abd, 2011). 

• φij = rand[–1, 1]. 

• Number of food sources SN = NP / 2. 

• Limit = 1,500 (Karaboga and Basturk, 2007; Akay and Karaboga, 2012). 

• The stopping criteria is either maximum number of function evaluations (which is set 
to be 200,000) is reached or the acceptable error (mentioned in Table 1) has been 
achieved. 

• The number of simulations/run =100. 

• C = 1.5 (Zhu and Kwong, 2010). 

• The value of α = 2 and λ = 1.5 are to be set based on the empirical experiments. 

• Value of termination criteria in PLLS is set to be ε = 0.01. 

• Parameter settings for the algorithms GABC, BSFABC and MABC are similar to their 
original research papers. 

• In order to investigate the effect of the parameter pr, described by Algorithm 4 on  
the performance of PLABC, its sensitivity with respect to different values of pr in the 
range [0.2, 1], is examined in the Figure 2. It can be observed from Figure 2 that the 
test problems are very sensitive towards pr and value 0.4 gives comparatively better 
results. Therefore, pr = 0.4 is selected for the experiments in this paper. 

6.3 Results comparison 

Numerical results with experimental setting of Subsection 5.6 are given in Table 2. In 
Table 2, standard deviation (SD), mean error (ME), average function evaluations (AFE), 
and success rate (SR) are reported. Table 2 shows that most of the time PLABC 
outperforms in terms of reliability, efficiency and accuracy as compare to the basic ABC, 
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GABC, BSFABC and MABC. Some more intensive analyses based on performance 
indices and boxplots have been carried out for results of ABC and its variants. 

Figure 2 Effect of parameter pr on success rate (see online version for colours) 

 

Table 2 Comparison of the results of test problems 

Test function Algorithm SD ME AFE SR 

f1 ABC 2.29E-06 7.78E-06 23,267.5 100 
PLABC 6.10E-07 9.43E-06 16,401.77 100 
GABC 2.21E-06 7.64E-06 15,414.5 100 

BSFABC 2.20E-06 7.21E-06 31,618.5 100 
MABC 7.63E-07 9.18E-06 22,889 100 

f2 ABC 2.62E-06 7.26E-06 16,967 100 
PLABC 6.40E-07 9.41E-06 10,317.44 100 
GABC 1.53E-06 8.27E-06 11,728.5 100 

BSFABC 2.17E-06 7.63E-06 18,737 100 
MABC 7.37E-07 9.13E-06 16,736 100 

f3 ABC 1.52E+01 9.73E+01 200,000 0 
PLABC 2.26E-02 8.07E-02 200,016.07 0 
GABC 1.89E+01 9.73E+01 200,000.01 0 

BSFABC 1.22E+01 8.49E+01 200,000 0 
MABC 1.02E-01 1.46E-01 200,005.52 0 

f4 ABC 6.25E-02 9.56E-01 149,071.35 68 
PLABC 3.04E-02 9.34E-01 19,392.79 100 
GABC 3.38E-02 9.32E-01 75,922.34 98 

BSFABC 6.58E-02 9.53E-01 184,747.81 74 
MABC 3.46E-02 9.31E-01 27,739.5 100 
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Table 2 Comparison of the results of test problems (continued) 

Test function Algorithm SD ME AFE SR 

f5 ABC 5.63E-01 1.17E+01 200,038.43 0 

PLABC 4.18E-01 9.03E+00 200,029.42 0 

GABC 5.20E-01 1.05E+01 200,016.25 0 

BSFABC 5.03E-01 1.00E+01 200,031.51 0 

MABC 4.51E-01 9.86E+00 200,014.41 0 
f6 ABC 1.06E-01 1.84E-02 83,315.84 93 

PLABC 7.82E-02 7.87E-03 57,398.94 99 
GABC 2.44E-06 6.92E-06 47,798.14 100 

BSFABC 3.00E-01 1.19E-01 127,844.86 78 
MABC 1.37E-06 8.53E-06 68,974.05 100 

f7 ABC 7.34E-01 9.40E-01 199,149.67 1 
PLABC 1.47E-02 8.39E-02 16,118.72 100 
GABC 9.76E-01 1.10E+00 190,113.42 12 

BSFABC 5.52E+00 4.47E+00 200,022.66 0 
MABC 1.02E-01 1.15E-01 131,932.63 94 

f8 ABC 1.96E-06 8.03E-06 27,967 100 
PLABC 6.23E-07 9.43E-06 23,540.95 100 
GABC 1.98E-06 8.00E-06 19,519.5 100 

BSFABC 2.40E-06 6.87E-06 49,294 100 
MABC 7.38E-07 9.11E-06 33,057.5 100 

f9 ABC 1.40E-06 8.66E-06 16,391.49 100 
PLABC 2.97E-06 5.22E-06 981.26 100 
GABC 2.88E-06 5.31E-06 7,862.92 100 

BSFABC 4.20E-05 1.55E-05 47,809.44 95 
MABC 3.06E-06 4.73E-06 10,092.1 100 

f10 ABC 1.10E-01 1.54E-01 200,023.98 0 
PLABC 2.15E-03 7.43E-03 13,343.06 100 
GABC 1.61E-02 1.95E-02 159,885.7 39 

BSFABC 2.19E-02 2.48E-02 158,412.54 42 
MABC 1.05E-02 1.50E-02 151,722.6 49 

f11 ABC 7.30E-05 1.88E-04 186,761.63 15 
PLABC 8.33E-05 9.79E-05 19,205.54 99 
GABC 3.07E-05 8.64E-05 93,221.31 89 

BSFABC 8.11E-05 1.39E-04 147,317.48 57 
MABC 7.45E-05 2.02E-04 187,855.66 10 
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Table 2 Comparison of the results of test problems (continued) 

Test function Algorithm SD ME AFE SR 

f12 ABC 1.62E+00 7.69E-01 177,169.99 19 
PLABC 5.45E-01 1.73E-01 82,793.2 97 
GABC 6.10E-02 9.07E-02 110,189.39 92 

BSFABC 4.60E+00 2.48E+00 182,906.62 16 
MABC 8.83E-01 6.98E-01 171,598.96 30 

f13 ABC 2.67E-06 6.77E-06 9,023.5 100 
PLABC 1.31E-06 8.68E-06 5,806.9 100 
GABC 2.19E-06 7.23E-06 5,518 100 

BSFABC 2.10E-06 7.29E-06 18,154 100 
MABC 1.64E-06 7.92E-06 8,651 100 

f14 ABC 1.22E+01 8.72E+01 200,011.66 0 
PLABC 1.89E+01 1.25E+02 200,024.78 0 
GABC 1.10E+01 8.43E+01 200,007.19 0 

BSFABC 1.66E+01 1.25E+02 200,036.07 0 
MABC 9.92E+00 8.21E+01 200,015.17 0 

f15 ABC 2.89E+03 1.15E+04 200,027.55 0 
PLABC 8.02E+03 2.17E+04 200,047.72 0 
GABC 2.73E+03 1.09E+04 200,015.94 0 

BSFABC 7.90E+03 2.85E+04 200,036.66 0 
MABC 3.01E+03 1.05E+04 200,020.3 0 

f16 ABC 3.00E-03 1.09E-03 74,162.28 88 
PLABC 1.56E-03 2.28E-04 61,308.12 98 
GABC 3.01E-06 4.91E-06 38,682.29 100 

BSFABC 6.30E-03 4.83E-03 111,954.86 58 
MABC 1.89E-03 5.24E-04 88,708.91 92 

f17 ABC 2.04E-06 7.51E-06 16,516.5 100 
PLABC 7.97E-07 9.21E-06 10,383.55 100 
GABC 1.41E-06 8.31E-06 9,327 100 

BSFABC 1.58E-06 8.13E-06 31,237 100 
MABC 8.87E-07 8.99E-06 14,197.54 100 

f18 ABC 8.31E-06 1.38E-06 93,469.31 72 
PLABC 4.42E-15 5.59E-15 4,490.89 100 
GABC 4.67E-15 5.24E-15 3,910.98 100 

BSFABC 4.76E-15 6.56E-15 13,124.91 100 
MABC 4.30E-15 4.68E-15 11,969.73 100 
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Table 2 Comparison of the results of test problems (continued) 

Test function Algorithm SD ME AFE SR 

f19 ABC 8.48E-05 2.67E-05 184,517.49 15 
PLABC 2.86E-14 5.04E-14 13,912.06 100 
GABC 1.34E-13 5.74E-14 45,418.68 99 

BSFABC 3.17E-14 4.43E-14 4,682.16 100 
MABC 1.25E-03 7.87E-04 200,026.53 0 

f20 ABC 5.43E-03 4.90E-01 1,394.02 100 
PLABC 5.94E-03 4.90E-01 674.29 100 
GABC 5.21E-03 4.89E-01 736 100 

BSFABC 5.20E-03 4.92E-01 2,768.27 100 
MABC 5.20E-03 4.90E-01 2,315.54 100 

f21 ABC 6.65E-06 8.93E-05 1,179.03 100 
PLABC 6.81E-06 9.01E-05 311.5 100 
GABC 6.58E-06 8.78E-05 611.5 100 

BSFABC 6.81E-06 8.80E-05 1,014.51 100 
MABC 6.62E-06 8.93E-05 1,745.22 100 

f22 ABC 2.91E-06 1.95E-03 23,897.62 100 
PLABC 2.89E-06 1.95E-03 2,403.49 100 
GABC 2.86E-06 1.95E-03 4,497.41 100 

BSFABC 2.88E-06 1.95E-03 16,033.86 100 
MABC 2.56E-06 1.95E-03 8,535.54 100 

f23 ABC 5.90E-06 5.30E-06 4,930.84 100 
PLABC 5.53E-06 5.13E-06 2,292.61 100 
GABC 5.77E-06 5.14E-06 2,495.11 100 

BSFABC 5.86E-06 5.17E-06 9,367.23 100 
MABC 5.50E-06 4.82E-06 30,951.69 100 

f24 ABC 1.62E-16 8.06E-16 59,873 100 
PLABC 3.81E-17 9.60E-16 45,858.92 100 
GABC 1.08E-16 8.73E-16 38,699.5 100 

BSFABC 2.39E-16 7.14E-16 71,431.5 100 
MABC 7.83E-17 9.18E-16 59,690 100 

Figure 3 shows the convergence characteristics in terms of the error of the median run of 
each algorithm for functions on which ABC, PLABC, GABC, BSFABC and MABC 
algorithms achieved 100% success rate within the specified maximum function 
evaluations (to carry out fair comparison of convergence rate). It can be observed that the 
convergence of PLABC is relatively better than ABC, GABC, BSFABC and MABC. 
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Figure 3 Convergence characteristics of ABC, PLABC, GABC, BSFABC and MABC for functions 
(a) f1, (b) f2, (c) f8, (d) f13, (e) f17, (f) f20, (g) f21, (h) f22, (i) f23, (j) f24 (see online version 
for colours) 
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Figure 3 Convergence characteristics of ABC, PLABC, GABC, BSFABC and MABC for functions 
(a) f1, (b) f2, (c) f8, (d) f13, (e) f17, (f) f20, (g) f21, (h) f22, (i) f23, (j) f24 (continued)  
(see online version for colours) 
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Figure 3 Convergence characteristics of ABC, PLABC, GABC, BSFABC and MABC for functions 
(a) f1, (b) f2, (c) f8, (d) f13, (e) f17, (f) f20, (g) f21, (h) f22, (i) f23, (j) f24 (continued)  
(see online version for colours) 
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Figure 3 Convergence characteristics of ABC, PLABC, GABC, BSFABC and MABC for functions 
(a) f1, (b) f2, (c) f8, (d) f13, (e) f17, (f) f20, (g) f21, (h) f22, (i) f23, (j) f24 (continued)  
(see online version for colours) 

 
(j) 

PLABC, ABC, GABC, BSFABC, and MABC are compared through SR, ME and AFE in 
Table 2. First SR is compared for all these algorithms and if it is not possible to 
distinguish the algorithms based on SR then comparison is made on the basis of AFE. ME 
is used for comparison if it is not possible on the basis of SR and AFE both. Outcome of 
this comparison is summarised in Table 3. In Table 3, ‘+’ indicates that the PLABC is 
better than the considered algorithms and ‘–’ indicates that the algorithm is not better or 
the difference is very small. The last row of Table 3, establishes the superiority of 
PLABC over ABC, BSFABC, MABC. 
Table 3 Summary of Table 2 outcome 

Function PLABC vs. 
ABC 

PLABC vs. 
GABC 

PLABC vs. 
BSFABC 

PLABC vs. 
MABC 

f1 + – + + 
f2 + + + + 
f3 + + + + 
f4 + + + + 
f5 + + + + 
f6 + – + – 
f7 + + + + 
f8 + – + + 
f9 + + + + 
f10 + + + + 
f11 + + + + 
f12 + + + + 
f13 + – + + 
f14 – – – – 
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Table 3 Summary of Table 2 outcome (continued) 

Function PLABC vs. 
ABC 

PLABC vs. 
GABC 

PLABC vs. 
BSFABC 

PLABC vs. 
MABC 

f15 – – + – 
f16 + – + + 
f17 + – + + 
f18 + – + + 
f19 + + – + 
f20 + + + + 
f21 + + + + 
f22 + + + + 
f23 + + + + 
f24 + – + + 
Total number of + sign 22 14 22 21 

For the purpose of comparison in terms of consolidated performance, boxplot analyses 
have been carried out for all the considered algorithms. The empirical distribution of data 
is efficiently represented graphically by the boxplot analysis tool (Williamson et al., 
1989). The boxplots for ABC, PLABC, GABC, BSFABC and MABC are shown in  
Figure 4. It is clear from this figure that PLABC is better than the considered algorithms 
as interquartile range and median are comparatively low. 

Figure 4 Boxplots graphs for average function evaluation (see online version for colours) 

 

Further, to compare the considered algorithms, by giving weighted importance to the 
success rate, the mean error and the average number of function evaluations, performance 
indices (PI) are calculated (Bansal and Sharma, 2012). The values of PI for the ABC, 
PLABC, GABC, BSFABC, and MABC are calculated by using following equations: 
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thminimum of mean error obtained for the  problemiMo i=  

thmean error obtained by an algorithm for the  problemiAo i=  

total number of optimisation problems evaluated.pN =  

The weights assigned to the success rate, the average number of function evaluations and 
the mean error are represented by k1, k2 and k3 respectively where k1 + k2 + k3 = 1 and  
0 ≤ k1, k2, k3 ≤ 1. To calculate the PIs, equal weights are assigned to two variables while 
weight of the remaining variable vary from 0 to 1 as given in Bansal and Sharma (2012). 
Following are the resultant cases: 

1 1 2 3
1–, , 0 1

2
Wk W k k W= = = ≤ ≤  

2 2 1 3
1–, , 0 1

2
Wk W k k W= = = ≤ ≤  

3 3 1 2
1–, , 0 1.

2
Wk W k k W= = = ≤ ≤  

The graphs corresponding to each of the cases 1, 2 and 3 for ABC, PLABC, GABC, 
BSFABC, and MABC are shown in Figures 5(a), 5(b), and 5(c) respectively. In these 
figures the weights k1, k2 and k3 are represented by horizontal axis while the PI is 
represented by the vertical axis. 
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Figure 5 Performance index for test problems; (a) for case 1, (b) for case 2 and (c) for case 3  
(see online version for colours) 
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In case 1, average number of function evaluations and the mean error are given equal 
weights. PIs of the considered algorithms are superimposed in Figure 5(a) for comparison 
of the performance. It is observed that PIs of PLABC are higher than the considered 
algorithms. In case 2, equal weights are assigned to the success rate and mean error and 
in case 3, equal weights are assigned to the success rate and average number of function 
evaluations. It is clear from Figure 5(b) and Figure 5(c) that the algorithms perform same 
as in case 1. 

7 Conclusions 

In this paper, a PLLS strategy is proposed and incorporated with ABC. The so obtained 
ABC is named as PLABC. In the proposed LS, new solutions are generated in the 
neighbourhood of the best solution depending upon a newly introduced parameter, 
perturbation rate. Further, the proposed algorithm is compared to the recent variants of 
ABC, namely, GABC, BSFABC and MABC and with the help of experiments over test 
problems, it is shown that the PLABC outperforms other algorithms under consideration 
in terms of reliability, efficiency and accuracy. 
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