

 164 Int. J. Artificial Intelligence and Soft Computing, Vol. 4, Nos. 2/3, 2014

 Copyright © 2014 Inderscience Enterprises Ltd.

Power law-based local search in artificial bee colony

Harish Sharma*, Jagdish Chand Bansal and
K.V. Arya
ABV-Indian Institute of Information Technology and
Management Gwalior,
Morena Link Road, Gwalior,
Madhya Pradesh-474015, India
E-mail: harish.sharma0107@gmail.com
E-mail: jcbansal@gmail.com
E-mail: kvarya@gmail.com
*Corresponding author

Abstract: Artificial bee colony (ABC) optimisation algorithm is relatively a
simple and recent population-based probabilistic approach for global
optimisation. ABC has been outperformed over some nature inspired
algorithms (NIAs) when tested over benchmark as well as real world
optimisation problems. The solution search equation of ABC is significantly
influenced by a random quantity which helps in exploration at the cost of
exploitation of the search space. In the solution search equation of ABC, there
is an enough chance to skip the true solution due to large step sizes. In order to
balance the diversity and convergence capability of the ABC, in this paper, a
power law-based local search strategy is proposed and integrated with ABC.
The proposed strategy is named as power law-based local search in ABC
(PLABC). In the PLABC, new solutions are generated around the best solution
and it helps to enhance the exploitation capability of ABC. Further, to
improve the exploration capability, numbers of scout bees are increased. The
experiments on 24 test problems of different complexities show that the
proposed strategy outperforms the basic ABC and recent variants of ABC,
namely, Gbest guided ABC (GABC), best-so-far ABC (BSFABC) and modified
ABC in most of the experiments.

Keywords: numerical optimisation; swarm intelligence; memetic algorithm;
power law-based local search; PLLS; local search.

Reference to this paper should be made as follows: Sharma, H., Bansal, J.C.
and Arya, K.V. (2014) ‘Power law-based local search in artificial bee colony’,
Int. J. Artificial Intelligence and Soft Computing, Vol. 4, Nos. 2/3, pp.164–194.

Biographical notes: Harish Sharma received his BTech and MTech degrees in
Computer Engineering from Goverment Engineering College, Kota and
Rajasthan Technical University, Rajasthan in 2003 and 2009, respectively. He
is currently a Research Scholar at ABV – Indian Institute of Information
Technology and Management, Gwalior, India.

Jagdish Chand Bansal is an Assistant Professor at ABV-Indian Institute of
Information Technology and Management Gwalior. He obtained his PhD in
Mathematics from IIT Roorkee. He is the Editor-In-Chief of International
Journal of Swarm Intelligence (IJSI) published by Inderscience. His primary
area of interest is nature inspired optimisation techniques.

 Power law-based local search in artificial bee colony 165

Karm Veer Arya is working as an Associate Professor at ABV-Indian Institute
of Information Technology and Management, Gwalior, India. He obtained his
PhD in Computer Science and Engineering from Indian Institute of Technology
Kanpur, India. He has more than 20 years of experience teaching undergraduate
and postgraduate classes. He has published more than 75 journal and
conference papers in the areas of information security, image processing,
biometrics, wireless ad hoc networks and soft computing.

1 Introduction

Swarm intelligence has become an emerging and interesting area in the field of nature
inspired techniques that is used to solve optimisation problems during the past decade. It
is based on the collective behaviour of social creatures. Swarm-based optimisation
algorithms find solution by collaborative trial and error process. Social creatures utilises
their ability of social learning to solve complex tasks. Peer to peer learning behaviour of
social colonies is the main driving force behind the development of many efficient
swarm-based optimisation algorithms. Researchers have analysed such behaviours and
designed algorithms that can be used to solve non-linear, non-convex or discrete
optimisation problems. Previous research (Dorigo and Di Caro, 1999; Kennedy and
Eberhart, 1995; Price et al., 2005; Vesterstrom and Thomsen, 2004) have shown that
algorithms based on swarm intelligence have great potential to find solutions of real
world optimisation problems. The algorithms that have emerged in recent years include
ant colony optimisation (ACO) (Dorigo and Di Caro, 1999), particle swarm optimisation
(PSO) (Kennedy and Eberhart, 1995), bacterial foraging optimisation (BFO) (Passino,
2002), etc.

Artificial bee colony (ABC) optimisation algorithm introduced by Karaboga (2005) is
a recent addition in this category. This algorithm is inspired by the behaviour of honey
bees when seeking a quality food source. Like any other population-based optimisation
algorithm, ABC consists of a population of potential solutions. The potential solutions are
food sources of honey bees. The fitness is determined in terms of the quality (nectar
amount) of the food source. ABC is relatively a simple-, fast- and population-based
stochastic search technique in the field of nature inspired algorithms (NIAs).

There are two fundamental processes which drive the swarm to update in ABC: the
variation process, which enables exploring different areas of the search space, and the
selection process, which ensures the exploitation of the previous experience. However, it
has been shown that the ABC may occasionally stop proceeding toward the global
optimum even though the population has not converged to a local optimum (Karaboga
and Akay, 2009). It can be observed that the solution search equation of ABC algorithm
is good at exploration but poor at exploitation (Zhu and Kwong, 2010). Therefore, to
maintain the proper balance between exploration and exploitation behaviour of ABC, it is
highly required to develop a local search (LS) approach in the basic ABC to exploit the
search region. In this paper, a LS strategy based on power law-based control parameter, is
proposed and incorporated with ABC. In the proposed strategy, the step sizes are
controlled by a parameter which is a power law function of iteration counter. The
proposed strategy is used for finding the global optima of a unimodal and/or multimodal
functions by iteratively reducing the step size in updating process of the candidate

 166 H. Sharma et al.

solution in the search space within which the optima is known to exist. Further, to
improve the diversity of the algorithm, numbers of scout bees are increased. Further, the
strategy proposed in this paper is also compared to recent variants of ABC, named, Gbest
guided artificial bee colony (GABC) algorithm (Zhu and Kwong, 2010), best-so-far
artificial bee colony (BSFABC) (Banharnsakun et al., 2011) and modified artificial bee
colony (MABC) (Akay and Karaboga, 2012).

Rest of the paper is organised as follows: Section 2 describes a brief review on
memetic approach. Basic ABC is explained in Section 3. Power law-based local search
(PLLS) is proposed and described in Section 4. In Section 5, PLLS is incorporated with
ABC. In Section 6, performance of the proposed strategy is analysed. Finally, in
Section 7, paper is concluded.

2 Brief review on memetic approach

In the field of optimisation, memetic computing is an interesting approach to solve the
complex problems (Ong et al., 2010). Memetic is synonymous to memes which can be
described as “instructions for carrying out behavior, stored in brains” (Susan, 1999).
Memetic computing is defined as “... a paradigm that uses the notion of memes as units of
information encoded in computational representations for the purpose of problem
solving” (Ong et al., 2010). Memetic computing can be seen then as a subject which
studies complex structures composed of simple modules (memes) which interact and
evolve adapting to the problem in order to solve it (Neri et al., 2012). A good survey on
memetic computing can be found in Ong et al. (2010), Neri et al. (2012), and Chen et al.
(2011). Memetic algorithms (MAs) can be seen as an aspect of the realisation or
condition-based subset of memetic computing (Chen et al., 2011). The term ‘MA’
was first presented by Moscato (1989) as a population-based algorithm having local
improvement strategy for search of solution. MAs are hybrid search methods that are
based on the population-based search framework (Fogel and Michalewicz, 1997; Eiben
and Smith, 2003) and neighbourhood-based LS framework (Hoos and Stützle, 2005).
Popular examples of population-based methods include genetic algorithms (GAs) and
other evolutionary algorithms while Tabu search and simulated annealing (SA) are two
prominent LS representatives. The main role of MA in evolutionary computing is to
provide a LS to establish exploitation of the search space. LS algorithms can be
categorised as (Neri et al., 2012):

• stochastic or deterministic behaviour

• single solution or multi-solution-based search

• steepest descent or greedy approach-based selection.

A LS is thought of as an algorithmic structure converging to the closest local optimum
while the global search should have the potential of detecting the global optimum.
Therefore, to maintain the proper balance between exploration and exploitation behaviour
of an algorithm, it is highly required to incorporate a LS approach in the basic
population-based algorithm to exploit the search region.

Generally, population-based search algorithms like GA (Goldberg, 1989), evolution
strategy (ES) (Beyer and Schwefel, 2002), differential evolution (DE) (Price et al., 2005),
ACO (Dorigo and Di Caro, 1999), PSO (Kennedy, 2006), artificial immune system

 Power law-based local search in artificial bee colony 167

(Dasgupta, 2006), ABC (Karaboga, 2005), etc., are stochastic in nature (Yang, 2010). In
recent years, researchers hybridised the LS procedures with the population-based
algorithms to improve the exploitation capability of the population-based algorithms
(Neri and Tirronen, 2009; Caponio et al., 2009; Mininno and Neri, 2010; Wang et al.,
2009; Valenzuela and Smith, 2002; Ishibuchi et al., 2003; Ong et al., 2003). Further,
MAs have been successfully applied to solve a wide range of complex optimisation
problems like multi-objective optimisation (Knowles et al., 2008; Goh et al., 2009),
continuous optimisation (Ong et al., 2003; Ong and Keane, 2004), combinatorial
optimisation (Ishibuchi et al., 2003; Tang et al., 2009; Repoussis et al., 2009),
bioinformatics (Richer et al., 2009; Gallo et al., 2009), flow shop scheduling (Ishibuchi
et al., 2003), scheduling and routing (Brest et al., 2006), machine learning (Ishibuchi and
Yamamoto, 2004; Caponio et al., 2007; Ruiz-Torrubiano and Suárez, 2010), etc.

Ong and Keane (2004) introduced strategies for MAs control that decide at runtime
which LS method is to be chosen for the local refinement of the solution. Further, they
proposed multiple LS procedures during a MA search in the sprit of Lamarckian learning.
Further, Ong et al. (2006) described a classification of memes adaptation in adaptive MAs
on the basis of the mechanism used and the level of historical knowledge on the memes
employed. Then the asymptotic convergence properties of the adaptive MAs are analysed
according to the classification. Nguyen et al. (2009) presented a novel probabilistic
memetic framework that models MAs as a process involving the decision of embracing
the separate actions of evolution or individual learning and analysed the probability of
each process in locating the global optimum. Further, the framework balances evolution
and individual learning by governing the learning intensity of each individual according
to the theoretical upper bound derived while the search progresses.

In past, very few efforts have been done to incorporate a LS with ABC. Kang et al.
(2011b) proposed a Hooke Jeeves artificial bee colony (HJABC) algorithm for numerical
optimisation. In HJABC, authors incorporated a LS technique which is based on
Hooke Jeeves (HJ) method (Hooke and Jeeves, 1961) with the basic ABC. Further,
Mezura-Montes and Velez-Koeppel (2010) introduced a variant of the basic ABC named
elitist ABC. In their work, the authors integrated two LS strategies. The first LS strategy
is used when 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% and 97% of function
evaluations have been completed. The purpose of this is to improve the best solution
achieved so far by generating a set of 1,000 new food sources in its neighbourhood. The
other LS works when 45%, 50%, 55%, 80%, 82%, 84%, 86%, 88%, 90%, 91%, 92%,
93%, 94%, 95%, 96%, 97%, 98%, and 99% of function evaluations have been reached.

Fister et al. (2012) proposed a memetic ABC for large-scale global optimisation. In
the proposed approach, ABC is hybridised with two LS heuristics: the Nelder-Mead
algorithm (NMA) (Rao and Rao, 2009) and the random walk with direction exploitation
(RWDE) (Rao and Rao, 2009). The former is attended more towards exploration, while
the latter more towards exploitation of the search space. The stochastic adaptive rule as
specified by Cotta and Neri (2012) is applied for balancing the exploration and
exploitation.

Kang et al. (2011b) presented a novel hybrid HJABC algorithm with intensification
search based on the HJ pattern search and the ABC. In the HJABC, two modification are
proposed, one is the fitness (fiti) calculation function of basic ABC is changed and
calculated by equation (1) and another is that a HJ LS is incorporated with the basic
ABC.

 168 H. Sharma et al.

()2(1) 1
2 ,

1
i

i
SP p

fit SP
NP
− −

= − +
−

 (1)

here pi is the position of the solution in the whole population after ranking,
SP ∈ [1.0, 2.0] is the selection pressure. A medium value of SP = 1.5 can be a good
choice and NP is the number of solutions.

Further Kang et al. (2011a) described a Rosenbrock artificial bee colony (RABC) that
combines Rosenbrock’s rotational direction method with ABC for accurate numerical
optimisation. In RABC, exploitation phase is introduced in the ABC using Rosenbrock’s
rotational direction method.

Sharma et al. (2012) introduced group social learning in ABC algorithm in which
they proposed structured swarm-based learning to balance the exploration and
exploitation in the swarm.

3 ABC algorithm

The ABC algorithm is relatively recent swarm intelligence-based algorithm. The
algorithm is inspired by the intelligent food foraging behaviour of honey bees. In ABC,
each solution of the problem is called food source of honey bees. The fitness is
determined in terms of the quality of the food source. In ABC, honey bees are classified
into three groups namely employed bees, onlooker bees and scout bees. The number of
employed bees are equal to the onlooker bees. The employed bees are the bees which
searches the food source and gather the information about the quality of the food source.
Onlooker bees which stay in the hive and search the food sources on the basis of the
information gathered by the employed bees. The scout bee, searches new food sources
randomly in places of the abandoned foods sources. Similar to the other population-based
algorithms, ABC solution search process is an iterative process. After, initialisation of the
ABC parameters and swarm, it requires the repetitive iterations of the three phases
namely employed bee phase, onlooker bee phase and scout bee phase. Each of the phase
is described as follows:

3.1 Initialisation of the swarm

The parameters for the ABC are the number of food sources, the number of trials after
which a food source is considered to be abandoned and the termination criteria. In the
basic ABC, the number of food sources are equal to the employed bees or onlooker bees.
Initially, a uniformly distributed initial swarm of SN food sources where each food source
xi(i = 1, 2,…,SN) is a D-dimensional vector, generated. Here D is the number of variables
in the optimisation problem and xi represent the ith food source in the swarm. Each food
source is generated as follows:

()min max min[0, 1]ij j j jx x rand x x= + − (2)

here xminj and xmaxj are bounds of xi in jth direction and rand[0, 1] is a uniformly
distributed random number in the range [0, 1].

 Power law-based local search in artificial bee colony 169

3.2 Employed bee phase

In the employed bee phase, employed bees modify the current solution (food source)
based on the information of individual experience and the fitness value of the new
solution. If the fitness value of the new solution is higher than that of the old solution, the
bee updates her position with the new one and discards the old one. The position updates
equation for ith candidate in this phase is

()ij ij ij ij kjv x x x= + −φ (3)

here k ∈ {1, 2,…,SN} and j ∈ {1, 2,…,D} are randomly chosen indices. k must be
different from i. φij is a random number between [–1, 1].

3.3 Onlooker bees phase

After completion of the employed bees phase, the onlooker bees phase starts. In onlooker
bees phase, all the employed bees share the new fitness information (nectar) of the new
solutions (food sources) and their position information with the onlooker bees in the hive.
Onlooker bees analyse the available information and select a solution with a probability
probi related to its fitness. The probability probi may be calculated using following
expression (there may be some other but must be a function of fitness):

1

 i
i SN

ii

fitnessprob
fitness

=

=
∑

 (4)

here fitnessi is the fitness value of the solution i. As in the case of the employed bee, it
produces a modification on the position in its memory and checks the fitness of the
candidate source. If the fitness is higher than that of the previous one, the bee memorises
the new position and forgets the old one.

3.4 Scout bees phase

If the position of a food source is not updated up to predetermined number of cycles, then
the food source is assumed to be abandoned and scout bees phase starts. In this phase, the
bee associated with the abandoned food source becomes scout bee and the food source is
replaced by a randomly chosen food source within the search space. In ABC,
predetermined number of cycles is a crucial control parameter which is called limit for
abandonment.

Assume that the abandoned source is xi. The scout bee replaces this food source by a
randomly chosen food source which is generated as follows:

()min max min[0, 1] , for {1, 2, , }ij j j jx x rand x x j D= + − ∈ … (5)

where xminj and xmaxj are bounds of xi in jth direction.

3.5 Main steps of the ABC algorithm

Based on the above explanation, it is clear that there are three control parameters in
ABC search process: The number of food sources SN (equal to number of onlooker or

 170 H. Sharma et al.

employed bees), the value of limit and the maximum number of iterations. The
pseudo-code of the ABC is shown in Algorithm 1 (Karaboga and Akay, 2009).
Algorithm 1 ABC algorithm

Initialize the parameters;
while Termination criteria is not satisfied do
 Step 1: Employed bee phase for generating new food sources.
 Step 2: Onlooker bees phase for updating the food sources depending on their nectar

amounts.
 Step 3: Scout bee phase for discovering the new food sources in place of abandoned food

sources.
 Step 4: Memorize the best food source found so far.
end while
Output the best solution found so far.

4 Power law-based local search

LS algorithms can be seen as a population-based stochastic algorithms, where main task
is to exploit the available knowledge about a problem. Generally, in LS algorithms some
or all individuals in the population are improved by some LS method. LS algorithms are
basically designed to incorporate a LS strategy between iterations of a population-based
search algorithm. In this way, the population-based global search algorithms are
hybridised with LS algorithms and the hybridised algorithms named as MAs. In MAs, the
global search capability of the main algorithm explore the search space, trying to identify
the most promising search space regions while the LS part scrutinises the surroundings of
some initial solution, exploiting it in this way.

The LS algorithms can be seen as a population-based stochastic algorithms, where
main task is to exploit the available knowledge about a problem. Therefore, steps sizes
play an important role in exploiting the identified region. Hence, in this paper, a LS
strategy, based on power law, is proposed and named PLLS. In the proposed strategy, the
step sizes, require to update an individual, is iteratively decreased to exploit the search
area in the vicinity of the best candidate solution. In the proposed search strategy, the
step sizes are forced to decrease using a parameter u which is a power law function
of iteration counter. The position update equation of an ith individual is shown in
equation (6):

1(1) () sign [0, 1] (),
2ij ijx t x t rand u t⎛ ⎞+ = + − ×⎜ ⎟

⎝ ⎠
αβ (6)

here α is the step size control parameter and β is the social learning component which

depends upon the global search algorithm. The 1sign [0, 1]
2

rand⎛ ⎞−⎜ ⎟
⎝ ⎠

 essentially provides

a random sign or direction while u is a parameter which is a power law function of
iteration counter (t) and computed using equation (7):

() , (1 3),λu t t λ−= < ≤ (7)

 Power law-based local search in artificial bee colony 171

Here t is the iteration counter. Due to equation (7), as the iteration counter increases,
u decreases results the decrease in step length. In this way, u calculated through
equation (7), helps to exploit the search space through iterations. The step size to update a

candidate solution is 1sign [0, 1]
2

rand u⎛ ⎞⎛ ⎞× − ×⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
β α a random walk process with a

power-law distribution with decreasing step-length and having a heavy tail. Figure 1
shows a power law graph, being used to demonstrate u and an example of the PLLS
random walk used to update an individual, using ABC as a global search algorithm
(β = (xij – xkj)), in two dimension search space for Beale function (f9). It is clear from
Figure 1(b) that the steps sizes provided by PLLS are stochastic and decreasing in nature
and therefore PLLS is expected to provide a better exploitation process in basic ABC.

Figure 1 (a) Power-law graph, being used to demonstrate u (b) Position’s of an individual based
on PLLS in two dimension search space (see online version for colours)

(a)

(b)

 172 H. Sharma et al.

The pseudo-code of the proposed PLLS is shown in Algorithm 2. In Algorithm 2, ε
determines the termination of LS.
Algorithm 2 PLLS strategy

Input optimization function Minf(x), α and λ;

Select the best solution xbest in the swarm;

Initialize a counter t = 1;

while (u > ε) do

 Compute u(t) = t–λ;

 Generate a new solution xnew using u(t) and α by equation (6).

 Calculate f(xnew).

 if f(xnew) < f(xbest) then

 xbest = xnew;

 end if

 t = t + 1;

end while

5 Power law-based local search in artificial bee colony

Exploration and exploitation are the two important characteristics of the population-based
optimisation algorithms such as GA (Goldberg, 1989), PSO (Kennedy and Eberhart,
1995), DE (Storn and Price, 1997), BFO (Passino, 2002) and so on. In these optimisation
algorithms, the exploration refers to the ability to investigate the various unknown
regions in the solution space to discover the global optimum. While, the exploitation
refers to the ability to apply the knowledge of the previous good solutions to find better
solutions. In practice, the exploration and exploitation contradict with each other, and in
order to achieve better optimisation performance, the two abilities should be well
balanced. Karaboga and Akay (2009) tested different variants of ABC for global
optimisation and found that the ABC shows poor performance and remains inefficient in
exploring the search space. In ABC, any potential solution updates itself using the
information provided by a randomly selected potential solution within the current
swarm. In this process, a step size which is a linear combination of a random number
φij ∈ [–1, 1], current solution and a randomly selected solution are used. Now the quality
of the updated solution highly depends upon this step size. If the step size is too large,
which may occur if the difference of current solution and randomly selected solution is
large with high absolute value of φij, then updated solution can surpass the true solution
and if this step size is too small then the convergence rate of ABC may significantly
decrease. A proper balance of this step size can balance the exploration and exploitation
capability of the ABC simultaneously. But, since this step size consists of random
component so the balance cannot be done manually.

The exploitation capability can be enhanced by incorporation of a LS algorithm with
the ABC algorithm. Therefore, in this paper, to balance the diversity and convergence
ability of ABC, four modifications are proposed:

 Power law-based local search in artificial bee colony 173

1 To enhance the exploitation capability of ABC, PLLS strategy (described in
Section 3) is incorporated with the basic ABC. In this way, the situation of skipping
true solution can be avoided while maintaining the speed of convergence. The PLLS
strategy, in case of large step sizes, can search within the area that is jumped by the
basic ABC.

2 To enhance the exploration capability, the number of scout bees are increased. This
modification avoids situation of stagnation of the algorithm. Therefore, in this paper,
all the bees who crosses the limit boundary are treated as the scout bees.

3 In the basic ABC, food sources are randomly initialised by the scout bees in the
static range (solution search space). Therefore, there is a chance to jump outside of
the already shrunken search space and the knowledge of the current reduced space
(converged swarm) would be lost. Hence, in this paper, the scout bees randomly
initialise the abandoned food sources by using current interval in the swarm which is,
as the search does progress, increasingly smaller than the corresponding initial range.
Now the following equation is used to update a food source xi:

()[0, 1] – ,ij j j jx a rand b a= +

 here [a, b] is the shrunken search space.

4 In the basic ABC, the food sources are updated, as shown in equation (3), based on
the random step size. Inspired by PSO (Kennedy and Eberhart, 1995) and GABC
(Zhu and Kwong, 2010) algorithms which, in order to improve the exploitation,
take advantage of the information of the global best solution to guide the search
of candidate solutions, the solution search equation described by equation (3) is
modified as follows (Zhu and Kwong, 2010):

() ()(1) () () – () () – () ,ij ij ij ij kj ij bestj ijx t x t x t x t ψ x t x t+ = + +φ

 here, ψij is a uniform random number in [0, C], where C is a non-negative constant.
For details description refer to Zhu and Kwong (2010).

In this paper, the PLLS strategy is incorporate with the basic ABC to improve the
exploitation capability. In the proposed LS strategy, the position update equation of an ith
food source is shown in equation (8).

() 1(1) () () – () sign [0, 1] – (),
2ij ij ij kjx t x t x t x t rand u t⎛ ⎞+ = + ×⎜ ⎟

⎝ ⎠
α (8)

here, symbols have their usual meanings, β = (xij – xkj) is the social learning component of
the ABC algorithm and ith solution is the best solution in the current swarm. The
proposed strategy in ABC is hereby, named as power law-based local search in artificial
bee colony (PLABC). The pseudo-code of the proposed PLLS strategy with ABC is
shown in Algorithm 3. In PLLS, only the best particle of the current swarm updates itself
in its neighbourhood.
Algorithm 3 PLLS strategy with ABC

Input optimization function Minf(x), α and λ;
Select the best solution xbest in the swarm;

 174 H. Sharma et al.

Initialize a counter t = 1;
while (u > ε) do
 Compute u(t) = t–λ;
 Generate a new solution xnew using u(t) and α by Algorithm 4.
 Calculate f(xnew).
 if f(xnew) < f(xbest) then
 xbest = xnew;
 end if
 t = t + 1;
end while

In Algorithms 3 and 4, ε is the termination criteria of the proposed LS. pr is a perturbation
rate (a number between 0 and 1) which controls the amount of perturbation in the best
solution, U(0, 1) is a uniform distributed random number between 0 and 1, D is the
dimension of the problem and xk is a randomly selected solution within swarm. See
Section 5.2 for details of these parameter settings.

The proposed PLABC consists of four phases: employed bee phase, onlooker bee
phase, scout bee phase and PLLS. The pseudo-code of the PLABC algorithm is shown in
Algorithm 5.
Algorithm 4 New solution generation

Input u, α and best solution xbest;
for j = 1 to D do
 if U(0, 1) > pr then

() 1– sign [0,1] – ;
2newj bestj bestj kjx x x x rand u⎛ ⎞= + × ×⎜ ⎟

⎝ ⎠
α

 else
 xnewj = xbestj;
 end if
end for
Return xnew

Algorithm 5 Power law-based local search in artificial bee colony

Initialize the parameters;
while Termination criteria do
 Step 1: Employed bee phase for generating new food sources.
 Step 2: Onlooker bees phase for updating the food sources depending on their nectar

amounts.
 Step 3: Scout bee phase for discovering the new food sources in place of abandoned food

sources.
 Step 4: Apply PLLS strategy using Algorithm 3.
end while
Print best solution.

 Power law-based local search in artificial bee colony 175

Table 1 Test problems

Te
st

 p
ro

bl
em

Se

ar
ch

 ra
ng

e
O

pt
im

um
 v

al
ue

D

Ac

ce
pt

ab
le

 e
rr

or

(
)

2
1

1
1

(
)

0.
1

co
s5

0.
1

D
D

i
i

i
i

f
x

x
πx

D
=

=
=

−
+

∑
∑

[–

1,
 1

]
(0

)
0.

1
f

D
=
−

G

30

1.
0E

-0
5

(
)

(
)

2
2

1
(

)
ex

p
0.

5
1

D
i

i
f

x
x

=
=
−

−
+

∑

[–
1,

 1
]

(0
)

1
f

=
−

G

30

1.
0E

-0
5

2
4

1
2

3
1

1
1

(
)

2
2

D
D

D
i

i
i

i
i

ix
ix

f
x

x
=

=
=

⎛
⎞

⎛
⎞

=
+

+
⎜

⎟
⎜

⎟
⎝

⎠
⎝

⎠
∑

∑
∑

[–

5.
12

, 5
.1

2]

(0
)

0
f

=
G

30

1.

0E
-0

2

(
)

2
2

4
1

1
(

)
1

co
s

2
0.

1
D

D
i

i
i

i
f

x
π

x
x

=
=

⎛
⎞

=
−

+
⎜

⎟
⎝

⎠
∑

∑

[–
10

0,
 1

00
]

(0
)

0
f

=
G

30

1.

0E
-0

1

4
5

1
(

)
[0

,1
)

n
i

i
f

x
ix

ra
nd

om
=

=
+

∑

[–
1.

28
, 1

.2
8]

(0

)
0

f
=

G

30

1.
0

(
)

2
2

1
1

1
6

1

0.
5

(
)

ex
p

8
D

i
i

i
i

i

x
x

x
x

f
x

I
−

+
+

=

⎛
⎞

⎛
⎞

−
+

+
=
−

×
⎜

⎟
⎜

⎟
⎝

⎠
⎝

⎠
∑

 w
he

re

(
)

2
2

1
1

co
s

4
0.

5
i

i
i

i
I

x
x

x
x +

+
=

+
+

[–
5,

 5
]

(0
)

1
f

D
=
−

+
G

10

1.

0E
-0

5

(
)2

7
1

1
2

(
)

1
D

D
i

i
i

i
i

f
x

x
x

x −
=

=
=

−
−

∑
∑

[–

D
2 , D

2]
(0

)
(

(
4)

(
1)

)/
6.

0
f

D
D

D
=
−

+
−

G

10

1.
0E

-0
1

 176 H. Sharma et al.

Table 1 Test problems (continued)

Te
st

 p
ro

bl
em

Se

ar
ch

 ra
ng

e
O

pt
im

um
 v

al
ue

D

Ac

ce
pt

ab
le

 e
rr

or

2
8

1
1

(
)

D
i

j
i

j
f

x
x

=
=

=
∑

∑

[–
65

.5
36

, 6
5.

53
6]

(0

)
0

f
=

G

30

1.
0E

-0
5

(
)

(
)

(
)

2
2

2
2

2
9

1
2

1
1

2
3

(
)

1.
5

–
1–

2.
25

–
1–

2.
62

5
–

1–
f

x
x

x
x

x
x

x
⎡

⎤
⎡

⎤
⎡

⎤
=

+
+

⎣
⎦

⎣
⎦

⎣
⎦

[–

4.
5,

 4
.5

]
f(3

, 0
.5

) =
 0

2

1.
0E

-0
5

(
)

(
)

(
)

(
)

(
)

(
)

(
)(

)

2
2

2
2

1
3

10
2

1
4

3
2

2

2
2

2
4

2
4

(
)

10
0

–
1–

90
–

1–

10

.1
–1

–1
19

.8
–1

–1

f
x

x
x

x
x

x
x

x
x

x
x

=
+

+
+

⎡
⎤

+
+

+
⎣

⎦

[–
10

, 1
0]

(1

)
0

f
=

G

4
1.

0E
-0

5

(
)

2
2

11
1

2
11

2
1

3
4

(
)

–
i

i
i

i
i

i

x
b

b
x

f
x

a
b

b
x

x
=

⎡
⎤

+
=

⎢
⎥

+
+

⎣
⎦

∑

[–
5,

 5
]

f(0
.1

92
8,

 0
.1

90
8,

 0
.1

23
1,

 0
.1

35
7)

 =
 3

.0
7E

-0
4

4
1.

0E
-0

5

(
)

(
)

(
)

[
]

[
]

–1
2

2
2

12
1

1

1
2

1
2

(
)

10
0

–
–1

,

–
1,

,
,

,
,

,
,

,

D
i

i
i

bi
as

i

D
D

f
x

z
z

z
f

z
x

o
x

x
x

x
o

o
o

o

+
=

=
+

+

=
+

=
=

∑
…

…

[–
10

0,
 1

00
]

f(o
) =

 f b
ia

s =
 3

90

10

1.
0E

-0
1

[
]

[
]

2
13

1

1
2

1
2

(
)

,

–
,

,
,

,
,

,
,

,

D
i

bi
as

i

D
D

f
x

z
f

z
x

o
x

x
x

x
o

o
o

o
=

=
+

=
=

=

∑
…

…

[–
10

0,
 1

00
]

f(o
) =

 f b
ia

s =
 –

45
0

10

1.
0E

-0
5

 Power law-based local search in artificial bee colony 177

Table 1 Test problems (continued)

Te
st

 p
ro

bl
em

Se

ar
ch

 ra
ng

e
O

pt
im

um
 v

al
ue

D

Ac

ce
pt

ab
le

 e
rr

or

(
)

(
)

(
)

(
)

2
14

1

1
2

1
2

(
)

,
–1

0c
os

2
10

(
–

),
,

,
,

,
,

,
,

D
bi

as
i

i
i

D
D

f
x

f
z

πz

z
x

o
x

x
x

x
o

o
o

o
=

=
+

+

=
=

=

∑
…

…

[–
5,

 5
]

f(o
) =

 f b
ia

s =
 –

33
0

10

1.
0E

-0
2

(
)

[
]

[
]

2

15
1

1

1
2

1
2

(
)

,

–
,

,
,

,
,

,
,

,

D
i

j
bi

as
i

j

D
D

f
x

z
f

z
x

o
x

x
x

x
o

o
o

o
=

=
=

+

=
=

=

∑
∑

…
…

[–
10

0,
 1

00
]

f(o
) =

 f b
ia

is
 =

 –
45

0
10

1.

0E
-0

5

[
]

[
]

2

16
1

1

1
2

1
2

(
)

–
co

s
1

,
4,

00
0

(
–

),
,

,
,

,
,

,
,

D
D

i
i

bi
as

i
i D

D

z
z

f
x

f
i

z
x

o
x

x
x

x
o

o
o

o

=
=

⎛
⎞

=
+

+
⎜

⎟
⎝

⎠
=

=
=

∑
∏ …

…

[–
60

0,
 6

00
]

f(o
) =

 f b
ia

s =
 –

18
0

10

1.
0E

-0
5

(
)

(
)

(
)

17
2

1

1

1
2

1
2

1
(

)
–2

0e
xp

–0
.2

1

 –

ex
p

co
s

2
20

,

(
–

),
,

,
,

,
,

,
,

D
i

i

D
i

bi
as

i

D
D

f
x

z
D

πz
e

f
D

z
x

o
x

x
x

x
o

o
o

o

=

=

⎛
⎞

=
⎜

⎟
⎝

⎠
⎛

⎞ +
+

+
⎜

⎟
⎝

⎠
=

=
=

∑

∑
…

…

[–
32

, 3
2]

f(o

) =
 f b

ia
s =

 –
14

0
10

1.

0E
-0

5

 178 H. Sharma et al.

Table 1 Test problems (continued)

Te
st

 p
ro

bl
em

Se

ar
ch

 ra
ng

e
O

pt
im

um
 v

al
ue

D

Ac

ce
pt

ab
le

 e
rr

or

(
)
(

)
(

)
(

)
(

)
(

)

2
2

2
18

1
2

1
2

1
2

1
2

2
2

2
1

2
1

2
1

2
1

2

(
)

1
1

19
–1

4
3

–1
4

6
3

30

2
–

3
18

–
32

12
48

–
36

27

f
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

=
+

+
+

+
+

+

+
+

+
+

[–

2,
 2

]
f(0

, –
1)

 =
 3

2

1.
0E

-1
4

(
)

(
)

(
)

(
)

2
2

1
2

19
1

2
(

)
–c

os
co

s
x

π
x

π
f

x
x

x
e

−
−

−
−

=

[–
10

, 1
0]

f(π

, π
) =

 –
1

2
1.

0E
-1

3

(
)

(
)

2
4

5
2

2
2

2
–5

2
2

20
1

2
1

2
1

2
(

)
10

–
10

f
x

x
x

x
x

x
x

=
+

+
+

+

[–
20

, 2
0]

f(0

, 1
5)

 =
 f(

0,
 –

15
) =

 –
24

,7
77

2

5.
0E

-0
1

(
)

(
)2

21
1

2
1

2
1

2
3

5
(

)
si

n
–

1
2

2
f

x
x

x
x

x
x

x
=

+
+

+
+

+

–1
.5

 ≤
 x

1 ≤
 4

,
–3

 ≤
 x

2 ≤
 3

f(–

0.
54

7,
 –

1.
54

7)
 =

 –
1.

91
33

30

1.

0E
-0

4

2
5

1
3

22
1

1
2

(
)

–
1

i
i

i
i

i

x
x

t
f

x
y

xt
x

v
=

⎛
⎞

=
⎜

⎟
+

+
⎝

⎠
∑

[–

10
, 1

0]

f(3
.1

3,
 1

5.
16

, 0
.7

8)
 =

 0
.4

E-
04

3

1.
0E

-0
3

(
)

(
)

(
)

5
5

23
1

2
1

1
(

)
–

co
s

(
1)

1
co

s
(

1)
1

i
i

f
x

i
i

x
i

i
x

=
=

=
+

+
−

+
+

∑
∑

[–

10
, 1

0]

f(7
.0

83
5,

 4
.8

58
0)

 =
 –

18
6.

73
09

2

1.
0E

-0
5

2
24

1
(

)
5

D
i

i
f

x
ix

=
=
∑

[–

5.
12

, 5
.1

2]

f(x
) =

 0
; x

(i)
 =

 5
i,

i =
 1

 :
D

 3
0

1.

0E
-1

5

 Power law-based local search in artificial bee colony 179

6 Experimental results and discussion

6.1 Test problems under consideration

In order to analyse the performance of PLABC, 24 different global optimisation problems
(f1 to f24) are selected (listed in Table 1). These are continuous optimisation problems and
have different degrees of complexity and multimodality. Test problems f1 to f11 and f18 to
f24 are taken from Ali et al. (2005) and test problems f12 to f17 are taken from Suganthan
(2005) with the associated offset values.

6.2 Experimental setting

To prove the efficiency of PLABC, it is compared with ABC and recent variants of ABC
named GABC (Zhu and Kwong, 2010), BSFABC (Banharnsakun et al., 2011) and MABC
(Akay and Karaboga, 2012). To test PLABC, ABC, GABC, BSFABC and MABC over
considered problems, following experimental setting is adopted:

• Colony size NP = 50 (Diwold et al., 2011; El-Abd, 2011).

• φij = rand[–1, 1].

• Number of food sources SN = NP / 2.

• Limit = 1,500 (Karaboga and Basturk, 2007; Akay and Karaboga, 2012).

• The stopping criteria is either maximum number of function evaluations (which is set
to be 200,000) is reached or the acceptable error (mentioned in Table 1) has been
achieved.

• The number of simulations/run =100.

• C = 1.5 (Zhu and Kwong, 2010).

• The value of α = 2 and λ = 1.5 are to be set based on the empirical experiments.

• Value of termination criteria in PLLS is set to be ε = 0.01.

• Parameter settings for the algorithms GABC, BSFABC and MABC are similar to their
original research papers.

• In order to investigate the effect of the parameter pr, described by Algorithm 4 on
the performance of PLABC, its sensitivity with respect to different values of pr in the
range [0.2, 1], is examined in the Figure 2. It can be observed from Figure 2 that the
test problems are very sensitive towards pr and value 0.4 gives comparatively better
results. Therefore, pr = 0.4 is selected for the experiments in this paper.

6.3 Results comparison

Numerical results with experimental setting of Subsection 5.6 are given in Table 2. In
Table 2, standard deviation (SD), mean error (ME), average function evaluations (AFE),
and success rate (SR) are reported. Table 2 shows that most of the time PLABC
outperforms in terms of reliability, efficiency and accuracy as compare to the basic ABC,

 180 H. Sharma et al.

GABC, BSFABC and MABC. Some more intensive analyses based on performance
indices and boxplots have been carried out for results of ABC and its variants.

Figure 2 Effect of parameter pr on success rate (see online version for colours)

Table 2 Comparison of the results of test problems

Test function Algorithm SD ME AFE SR

f1 ABC 2.29E-06 7.78E-06 23,267.5 100
PLABC 6.10E-07 9.43E-06 16,401.77 100
GABC 2.21E-06 7.64E-06 15,414.5 100

BSFABC 2.20E-06 7.21E-06 31,618.5 100
MABC 7.63E-07 9.18E-06 22,889 100

f2 ABC 2.62E-06 7.26E-06 16,967 100
PLABC 6.40E-07 9.41E-06 10,317.44 100
GABC 1.53E-06 8.27E-06 11,728.5 100

BSFABC 2.17E-06 7.63E-06 18,737 100
MABC 7.37E-07 9.13E-06 16,736 100

f3 ABC 1.52E+01 9.73E+01 200,000 0
PLABC 2.26E-02 8.07E-02 200,016.07 0
GABC 1.89E+01 9.73E+01 200,000.01 0

BSFABC 1.22E+01 8.49E+01 200,000 0
MABC 1.02E-01 1.46E-01 200,005.52 0

f4 ABC 6.25E-02 9.56E-01 149,071.35 68
PLABC 3.04E-02 9.34E-01 19,392.79 100
GABC 3.38E-02 9.32E-01 75,922.34 98

BSFABC 6.58E-02 9.53E-01 184,747.81 74
MABC 3.46E-02 9.31E-01 27,739.5 100

 Power law-based local search in artificial bee colony 181

Table 2 Comparison of the results of test problems (continued)

Test function Algorithm SD ME AFE SR

f5 ABC 5.63E-01 1.17E+01 200,038.43 0

PLABC 4.18E-01 9.03E+00 200,029.42 0

GABC 5.20E-01 1.05E+01 200,016.25 0

BSFABC 5.03E-01 1.00E+01 200,031.51 0

MABC 4.51E-01 9.86E+00 200,014.41 0
f6 ABC 1.06E-01 1.84E-02 83,315.84 93

PLABC 7.82E-02 7.87E-03 57,398.94 99
GABC 2.44E-06 6.92E-06 47,798.14 100

BSFABC 3.00E-01 1.19E-01 127,844.86 78
MABC 1.37E-06 8.53E-06 68,974.05 100

f7 ABC 7.34E-01 9.40E-01 199,149.67 1
PLABC 1.47E-02 8.39E-02 16,118.72 100
GABC 9.76E-01 1.10E+00 190,113.42 12

BSFABC 5.52E+00 4.47E+00 200,022.66 0
MABC 1.02E-01 1.15E-01 131,932.63 94

f8 ABC 1.96E-06 8.03E-06 27,967 100
PLABC 6.23E-07 9.43E-06 23,540.95 100
GABC 1.98E-06 8.00E-06 19,519.5 100

BSFABC 2.40E-06 6.87E-06 49,294 100
MABC 7.38E-07 9.11E-06 33,057.5 100

f9 ABC 1.40E-06 8.66E-06 16,391.49 100
PLABC 2.97E-06 5.22E-06 981.26 100
GABC 2.88E-06 5.31E-06 7,862.92 100

BSFABC 4.20E-05 1.55E-05 47,809.44 95
MABC 3.06E-06 4.73E-06 10,092.1 100

f10 ABC 1.10E-01 1.54E-01 200,023.98 0
PLABC 2.15E-03 7.43E-03 13,343.06 100
GABC 1.61E-02 1.95E-02 159,885.7 39

BSFABC 2.19E-02 2.48E-02 158,412.54 42
MABC 1.05E-02 1.50E-02 151,722.6 49

f11 ABC 7.30E-05 1.88E-04 186,761.63 15
PLABC 8.33E-05 9.79E-05 19,205.54 99
GABC 3.07E-05 8.64E-05 93,221.31 89

BSFABC 8.11E-05 1.39E-04 147,317.48 57
MABC 7.45E-05 2.02E-04 187,855.66 10

 182 H. Sharma et al.

Table 2 Comparison of the results of test problems (continued)

Test function Algorithm SD ME AFE SR

f12 ABC 1.62E+00 7.69E-01 177,169.99 19
PLABC 5.45E-01 1.73E-01 82,793.2 97
GABC 6.10E-02 9.07E-02 110,189.39 92

BSFABC 4.60E+00 2.48E+00 182,906.62 16
MABC 8.83E-01 6.98E-01 171,598.96 30

f13 ABC 2.67E-06 6.77E-06 9,023.5 100
PLABC 1.31E-06 8.68E-06 5,806.9 100
GABC 2.19E-06 7.23E-06 5,518 100

BSFABC 2.10E-06 7.29E-06 18,154 100
MABC 1.64E-06 7.92E-06 8,651 100

f14 ABC 1.22E+01 8.72E+01 200,011.66 0
PLABC 1.89E+01 1.25E+02 200,024.78 0
GABC 1.10E+01 8.43E+01 200,007.19 0

BSFABC 1.66E+01 1.25E+02 200,036.07 0
MABC 9.92E+00 8.21E+01 200,015.17 0

f15 ABC 2.89E+03 1.15E+04 200,027.55 0
PLABC 8.02E+03 2.17E+04 200,047.72 0
GABC 2.73E+03 1.09E+04 200,015.94 0

BSFABC 7.90E+03 2.85E+04 200,036.66 0
MABC 3.01E+03 1.05E+04 200,020.3 0

f16 ABC 3.00E-03 1.09E-03 74,162.28 88
PLABC 1.56E-03 2.28E-04 61,308.12 98
GABC 3.01E-06 4.91E-06 38,682.29 100

BSFABC 6.30E-03 4.83E-03 111,954.86 58
MABC 1.89E-03 5.24E-04 88,708.91 92

f17 ABC 2.04E-06 7.51E-06 16,516.5 100
PLABC 7.97E-07 9.21E-06 10,383.55 100
GABC 1.41E-06 8.31E-06 9,327 100

BSFABC 1.58E-06 8.13E-06 31,237 100
MABC 8.87E-07 8.99E-06 14,197.54 100

f18 ABC 8.31E-06 1.38E-06 93,469.31 72
PLABC 4.42E-15 5.59E-15 4,490.89 100
GABC 4.67E-15 5.24E-15 3,910.98 100

BSFABC 4.76E-15 6.56E-15 13,124.91 100
MABC 4.30E-15 4.68E-15 11,969.73 100

 Power law-based local search in artificial bee colony 183

Table 2 Comparison of the results of test problems (continued)

Test function Algorithm SD ME AFE SR

f19 ABC 8.48E-05 2.67E-05 184,517.49 15
PLABC 2.86E-14 5.04E-14 13,912.06 100
GABC 1.34E-13 5.74E-14 45,418.68 99

BSFABC 3.17E-14 4.43E-14 4,682.16 100
MABC 1.25E-03 7.87E-04 200,026.53 0

f20 ABC 5.43E-03 4.90E-01 1,394.02 100
PLABC 5.94E-03 4.90E-01 674.29 100
GABC 5.21E-03 4.89E-01 736 100

BSFABC 5.20E-03 4.92E-01 2,768.27 100
MABC 5.20E-03 4.90E-01 2,315.54 100

f21 ABC 6.65E-06 8.93E-05 1,179.03 100
PLABC 6.81E-06 9.01E-05 311.5 100
GABC 6.58E-06 8.78E-05 611.5 100

BSFABC 6.81E-06 8.80E-05 1,014.51 100
MABC 6.62E-06 8.93E-05 1,745.22 100

f22 ABC 2.91E-06 1.95E-03 23,897.62 100
PLABC 2.89E-06 1.95E-03 2,403.49 100
GABC 2.86E-06 1.95E-03 4,497.41 100

BSFABC 2.88E-06 1.95E-03 16,033.86 100
MABC 2.56E-06 1.95E-03 8,535.54 100

f23 ABC 5.90E-06 5.30E-06 4,930.84 100
PLABC 5.53E-06 5.13E-06 2,292.61 100
GABC 5.77E-06 5.14E-06 2,495.11 100

BSFABC 5.86E-06 5.17E-06 9,367.23 100
MABC 5.50E-06 4.82E-06 30,951.69 100

f24 ABC 1.62E-16 8.06E-16 59,873 100
PLABC 3.81E-17 9.60E-16 45,858.92 100
GABC 1.08E-16 8.73E-16 38,699.5 100

BSFABC 2.39E-16 7.14E-16 71,431.5 100
MABC 7.83E-17 9.18E-16 59,690 100

Figure 3 shows the convergence characteristics in terms of the error of the median run of
each algorithm for functions on which ABC, PLABC, GABC, BSFABC and MABC
algorithms achieved 100% success rate within the specified maximum function
evaluations (to carry out fair comparison of convergence rate). It can be observed that the
convergence of PLABC is relatively better than ABC, GABC, BSFABC and MABC.

 184 H. Sharma et al.

Figure 3 Convergence characteristics of ABC, PLABC, GABC, BSFABC and MABC for functions
(a) f1, (b) f2, (c) f8, (d) f13, (e) f17, (f) f20, (g) f21, (h) f22, (i) f23, (j) f24 (see online version
for colours)

(a)

(b)

(c)

 Power law-based local search in artificial bee colony 185

Figure 3 Convergence characteristics of ABC, PLABC, GABC, BSFABC and MABC for functions
(a) f1, (b) f2, (c) f8, (d) f13, (e) f17, (f) f20, (g) f21, (h) f22, (i) f23, (j) f24 (continued)
(see online version for colours)

(d)

(e)

(f)

 186 H. Sharma et al.

Figure 3 Convergence characteristics of ABC, PLABC, GABC, BSFABC and MABC for functions
(a) f1, (b) f2, (c) f8, (d) f13, (e) f17, (f) f20, (g) f21, (h) f22, (i) f23, (j) f24 (continued)
(see online version for colours)

(g)

(h)

(i)

 Power law-based local search in artificial bee colony 187

Figure 3 Convergence characteristics of ABC, PLABC, GABC, BSFABC and MABC for functions
(a) f1, (b) f2, (c) f8, (d) f13, (e) f17, (f) f20, (g) f21, (h) f22, (i) f23, (j) f24 (continued)
(see online version for colours)

(j)

PLABC, ABC, GABC, BSFABC, and MABC are compared through SR, ME and AFE in
Table 2. First SR is compared for all these algorithms and if it is not possible to
distinguish the algorithms based on SR then comparison is made on the basis of AFE. ME
is used for comparison if it is not possible on the basis of SR and AFE both. Outcome of
this comparison is summarised in Table 3. In Table 3, ‘+’ indicates that the PLABC is
better than the considered algorithms and ‘–’ indicates that the algorithm is not better or
the difference is very small. The last row of Table 3, establishes the superiority of
PLABC over ABC, BSFABC, MABC.
Table 3 Summary of Table 2 outcome

Function PLABC vs.
ABC

PLABC vs.
GABC

PLABC vs.
BSFABC

PLABC vs.
MABC

f1 + – + +
f2 + + + +
f3 + + + +
f4 + + + +
f5 + + + +
f6 + – + –
f7 + + + +
f8 + – + +
f9 + + + +
f10 + + + +
f11 + + + +
f12 + + + +
f13 + – + +
f14 – – – –

 188 H. Sharma et al.

Table 3 Summary of Table 2 outcome (continued)

Function PLABC vs.
ABC

PLABC vs.
GABC

PLABC vs.
BSFABC

PLABC vs.
MABC

f15 – – + –
f16 + – + +
f17 + – + +
f18 + – + +
f19 + + – +
f20 + + + +
f21 + + + +
f22 + + + +
f23 + + + +
f24 + – + +
Total number of + sign 22 14 22 21

For the purpose of comparison in terms of consolidated performance, boxplot analyses
have been carried out for all the considered algorithms. The empirical distribution of data
is efficiently represented graphically by the boxplot analysis tool (Williamson et al.,
1989). The boxplots for ABC, PLABC, GABC, BSFABC and MABC are shown in
Figure 4. It is clear from this figure that PLABC is better than the considered algorithms
as interquartile range and median are comparatively low.

Figure 4 Boxplots graphs for average function evaluation (see online version for colours)

Further, to compare the considered algorithms, by giving weighted importance to the
success rate, the mean error and the average number of function evaluations, performance
indices (PI) are calculated (Bansal and Sharma, 2012). The values of PI for the ABC,
PLABC, GABC, BSFABC, and MABC are calculated by using following equations:

 Power law-based local search in artificial bee colony 189

()1 2 31 2 3
1

1 pN
i i i

i

PI k k k
Np =

= + +∑ α α α

where

1 2 3
, if 0

; ; and
0, if 0

i
ii i

i i ii
i i

i

Mf SrSr Mo
Af

Tr Ao
Sr

⎧
>⎪= = =⎨

⎪ =⎩

α α α

1, 2, , pi N= …

thsuccessful simulations/runs of problemiSr i=

thtotal simulations of problemiTr i=

th

minimum of average number of function evaluations used for obtaining the
 required solution of problem

iMf
i

=

th

average number of function evaluations used for obtaining the required
 solution of problem

iAf
i

=

thminimum of mean error obtained for the problemiMo i=

thmean error obtained by an algorithm for the problemiAo i=

total number of optimisation problems evaluated.pN =

The weights assigned to the success rate, the average number of function evaluations and
the mean error are represented by k1, k2 and k3 respectively where k1 + k2 + k3 = 1 and
0 ≤ k1, k2, k3 ≤ 1. To calculate the PIs, equal weights are assigned to two variables while
weight of the remaining variable vary from 0 to 1 as given in Bansal and Sharma (2012).
Following are the resultant cases:

1 1 2 3
1–, , 0 1

2
Wk W k k W= = = ≤ ≤

2 2 1 3
1–, , 0 1

2
Wk W k k W= = = ≤ ≤

3 3 1 2
1–, , 0 1.

2
Wk W k k W= = = ≤ ≤

The graphs corresponding to each of the cases 1, 2 and 3 for ABC, PLABC, GABC,
BSFABC, and MABC are shown in Figures 5(a), 5(b), and 5(c) respectively. In these
figures the weights k1, k2 and k3 are represented by horizontal axis while the PI is
represented by the vertical axis.

 190 H. Sharma et al.

Figure 5 Performance index for test problems; (a) for case 1, (b) for case 2 and (c) for case 3
(see online version for colours)

(a)

(b)

(c)

 Power law-based local search in artificial bee colony 191

In case 1, average number of function evaluations and the mean error are given equal
weights. PIs of the considered algorithms are superimposed in Figure 5(a) for comparison
of the performance. It is observed that PIs of PLABC are higher than the considered
algorithms. In case 2, equal weights are assigned to the success rate and mean error and
in case 3, equal weights are assigned to the success rate and average number of function
evaluations. It is clear from Figure 5(b) and Figure 5(c) that the algorithms perform same
as in case 1.

7 Conclusions

In this paper, a PLLS strategy is proposed and incorporated with ABC. The so obtained
ABC is named as PLABC. In the proposed LS, new solutions are generated in the
neighbourhood of the best solution depending upon a newly introduced parameter,
perturbation rate. Further, the proposed algorithm is compared to the recent variants of
ABC, namely, GABC, BSFABC and MABC and with the help of experiments over test
problems, it is shown that the PLABC outperforms other algorithms under consideration
in terms of reliability, efficiency and accuracy.

References
Akay, B. and Karaboga, D. (2012) ‘A modified artificial bee colony algorithm for real-parameter

optimization’, Information Sciences, Vol. 192, pp.120–142, Elsevier.
Ali, M.M., Khompatraporn, C. and Zabinsky, Z.B. (2005) ‘A numerical evaluation of several

stochastic algorithms on selected continuous global optimization test problems’, Journal of
Global Optimization, Vol. 31, No. 4, pp.635–672.

Banharnsakun, A., Achalakul, T. and Sirinaovakul, B. (2011) ‘The best-so-far selection in artificial
bee colony algorithm’, Applied Soft Computing, Vol. 11, No. 2, pp.2888–2901.

Bansal, J.C. and Sharma, H. (2012) ‘Cognitive learning in differential evolution and its application
to model order reduction problem for single-input single-output systems’, Memetic
Computing, September, Vol. 4, No. 3, pp.209–229.

Beyer, H.G. and Schwefel, H.P. (2002) ‘Evolution strategies – a comprehensive introduction’,
Natural Computing, Vol. 1, No. 1, pp.3–52, Springer.

Brest, J., Zumer, V. and Maucec, M.S. (2006) ‘Self-adaptive differential evolution algorithm in
constrained real-parameter optimization’, IEEE Congress on Evolutionary Computation, 2006,
CEC 2006, pp.215–222, IEEE.

Caponio, A., Cascella, G.L., Neri, F., Salvatore, N. and Sumner, M. (2007) ‘A fast adaptive
memetic algorithm for online and offline control design of pmsm drives’, IEEE Transactions
on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 37, No. 1, pp.28–41.

Caponio, A., Neri, F. and Tirronen, V. (2009) ‘Super-fit control adaptation in memetic differential
evolution frameworks’, Soft Computing – A Fusion of Foundations, Methodologies and
Applications, Vol. 13, No. 8, pp.811–831.

Chen, X., Ong, Y.S., Lim, M.H. and Tan, K.C. (2011) ‘A multi-facet survey on memetic
computation’, IEEE Transactions on Evolutionary Computation, Vol. 15, No. 5, pp.591–607.

Cotta, C. and Neri, F. (2012) ‘Memetic algorithms in continuous optimization’, Handbook of
Memetic Algorithms, Studies in Computational Intelligence, Vol. 379, pp.121–134, Springer,
Berlin, Germany.

Dasgupta, D. (2006) ‘Advances in artificial immune systems’, Computational Intelligence
Magazine, Vol. 1, No. 4, pp.40–49, IEEE.

 192 H. Sharma et al.

Diwold, K., Aderhold, A., Scheidler, A. and Middendorf, M. (2011) ‘Performance evaluation of
artificial bee colony optimization and new selection schemes’, Memetic Computing, Vol. 3,
No. 3, pp.149–162, Springer.

Dorigo, M. and Di Caro, G. (1999) ‘Ant colony optimization: a new meta-heuristic’, Proceedings
of the 1999 Congress on Evolutionary Computation, 1999, CEC’99, Vol. 2, IEEE.

Eiben, A.E. and Smith, J.E. (2003) Introduction to Evolutionary Computing, Springer Verlag,
Heidelberg, Germany.

El-Abd, M. (2011) ‘Performance assessment of foraging algorithms vs. evolutionary algorithms’,
Information Sciences, Vol. 182, No. 1, pp.243–263.

Fister, I., Fister, I., Jr., Brest, J. and Žumer, V. (2012) ‘Memetic artificial bee colony algorithm for
large-scale global optimization’, Proceedings: 2012 IEEE Congress on Evolutionary
Computation (CEC), pp.1–8, IEEE, Arxiv preprint arXiv:1206.1074.

Fogel, D.B. and Michalewicz, Z. (1997) Handbook of Evolutionary Computation, Taylor &
Francis, New York.

Gallo, C., Carballido, J. and Ponzoni, I. (2009) ‘Bihea: a hybrid evolutionary approach for
microarray biclustering’, Advances in Bioinformatics and Computational Biology, pp.36–47.

Goh, C.K., Ong, Y.S. and Tan, K.C. (2009) Multi-objective Memetic Algorithms, Vol. 171,
Springer Verlag, Heidelberg, Germany, Vol. 171.

Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization, and Machine Learning.
Hooke, R. and Jeeves, T.A. (1961) ‘‘Direct Search’ solution of numerical and statistical problems’,

Journal of the ACM (JACM), Vol. 8, No. 2, pp.212–229.
Hoos, H.H. and Stützle, T. (2005) Stochastic Local Search: Foundations and Applications, Morgan

Kaufmann, Amsterdam.
Ishibuchi, H. and Yamamoto, T. (2004) ‘Fuzzy rule selection by multi-objective genetic local

search algorithms and rule evaluation measures in data mining’, Fuzzy Sets and Systems,
Vol. 141, No. 1, pp.59–88.

Ishibuchi, H., Yoshida, T. and Murata, T. (2003) ‘Balance between genetic search and local
search in memetic algorithms for multiobjective permutation flowshop scheduling’, IEEE
Transactions on Evolutionary Computation, Vol. 7, No. 2, pp.204–223.

Kang, F., Li, J. and Ma, Z. (2011a) ‘Rosenbrock artificial bee colony algorithm for accurate global
optimization of numerical functions’, Information Sciences, Vol. 181, No. 16, pp.3508–3531.

Kang, F., Li, J., Ma, Z. and Li, H. (2011b) ‘Artificial bee colony algorithm with local search for
numerical optimization’, Journal of Software, Vol. 6, No. 3, pp.490–497.

Karaboga, D. (2005) An Idea Based on Honey Bee Swarm for Numerical Optimization, Techn. Rep.
TR06, Erciyes Univ. Press, Erciyes.

Karaboga, D. and Akay, B. (2009) ‘A comparative study of artificial bee colony algorithm’,
Applied Mathematics and Computation, Vol. 214, No. 1, pp.108–132.

Karaboga, D. and Basturk, B. (2007) ‘Artificial bee colony (ABC) optimization algorithm for
solving constrained optimization problems’, Foundations of Fuzzy Logic and Soft Computing,
pp.789–798.

Kennedy, J. (2006) ‘Swarm intelligence’, Handbook of Nature-Inspired and Innovative Computing,
pp.187–219.

Kennedy, J. and Eberhart, R. (1995) ‘Particle swarm optimization’, Proceedings of the IEEE
International Conference on Neural Networks, 1995, IEEE, Vol. 4, pp.1942–1948.

Knowles, J., Corne, D. and Deb, K. (2008) Multiobjective Problem Solving from Nature: From
Concepts to Applications (Natural Computing Series), Springer, Berlin, Germany.

Mezura-Montes, E. and Velez-Koeppel, R.E. (2010) ‘Elitist artificial bee colony for constrained
real-parameter optimization’, 2010 Congress on Evolutionary Computation (CEC2010), IEEE
Service Center, Barcelona, Spain, pp.2068–2075.

Mininno, E. and Neri, F. (2010) ‘A memetic differential evolution approach in noisy optimization’,
Memetic Computing, Vol. 2, No. 2, pp.111–135.

 Power law-based local search in artificial bee colony 193

Moscato, P. (1989) ‘On evolution, search, optimization, genetic algorithms and martial arts:
towards memetic algorithms’, Caltech Concurrent Computation Program, C3P Report,
826:1989.

Neri, F. and Tirronen, V. (2009) ‘Scale factor local search in differential evolution’, Memetic
Computing, Vol. 1, No. 2, pp.153–171, Springer.

Neri, F., Cotta, C. and Moscato, P. (Eds.) (2012) Handbook of Memetic Algorithms, Studies in
Computational Intelligence, Vol. 379, Springer.

Nguyen, Q.H., Ong, Y.S. and Lim, M.H. (2009) ‘A probabilistic memetic framework’, IEEE
Transactions on Evolutionary Computation, Vol. 13, No. 3, pp.604–623.

Ong, Y.S. and Keane, A.J. (2004) ‘Meta-lamarckian learning in memetic algorithms’, IEEE
Transactions on Evolutionary Computation, Vol. 8, No. 2, pp.99–110.

Ong, Y.S., Lim, M. and Chen, X. (2010) ‘Memetic computation – past, present & future [research
frontier]’, Computational Intelligence Magazine, Vol. 5, No. 2, pp.24–31, IEEE.

Ong, Y.S., Lim, M.H., Zhu, N. and Wong, K.W. (2006) ‘Classification of adaptive memetic
algorithms: a comparative study’, IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics, Vol. 36, No. 1, pp.141–152.

Ong, Y.S., Nair, P.B. and Keane, A.J. (2003) ‘Evolutionary optimization of computationally
expensive problems via surrogate modeling’, AIAA Journal, Vol. 41, No. 4, pp.687–696.

Passino, K.M. (2002) ‘Biomimicry of bacterial foraging for distributed optimization and control’,
Control Systems Magazine, Vol. 22, No. 3, pp.52–67, IEEE.

Price, K.V., Storn, R.M. and Lampinen, J.A. (2005) Differential Evolution: A Practical Approach
to Global Optimization, Springer Verlag, Berlin, Germany.

Rao, S.S. and Rao, S.S. (2009) Engineering Optimization: Theory and Practice, John Wiley &
Sons, New York.

Repoussis, P.P., Tarantilis, C.D. and Ioannou, G. (2009) ‘Arc-guided evolutionary algorithm for
the vehicle routing problem with time windows’, IEEE Transactions on Evolutionary
Computation, Vol. 13, No. 3, pp.624–647.

Richer, J.M., Göeffon, A. and Hao, J.K. (2009) ‘A memetic algorithm for phylogenetic
reconstruction with maximum parsimony’, Evolutionary Computation, Machine Learning and
Data Mining in Bioinformatics, Vol. 5483, pp.164–175, Springer, Berlin Heidelberg.

Ruiz-Torrubiano, R. and Suárez, A. (2010) ‘Hybrid approaches and dimensionality reduction for
portfolio selection with cardinality constraints’, Computational Intelligence Magazine, Vol. 5,
No. 2, pp.92–107, IEEE.

Sharma, H., Verma, A. and Bansal, J. (2012) ‘Group social learning in artificial bee colony
optimization algorithm’, Proceedings of the International Conference on Soft Computing for
Problem Solving (SocProS 2011), 20–22 December 2011, Springer, pp.441–451.

Storn, R. and Price, K. (1997) ‘Differential evolution-a simple and efficient adaptive scheme
for global optimization over continuous spaces’, Journal of Global Optimization, Vol. 11,
No. 4, pp.341–359.

Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A. and Tiwari, S. (2005)
‘Problem definitions and evaluation criteria for the CEC 2005 special session on
real-parameter optimization’, CEC 2005.

Susan, J. (1999) The Meme Machine, Oxford University Press, New York.
Tang, K., Mei, Y. and Yao, X. (2009) ‘Memetic algorithm with extended neighborhood search for

capacitated arc routing problems’, IEEE Transactions on Evolutionary Computation, Vol. 13,
No. 5, pp.1151–1166.

Valenzuela, J. and Smith, A.E. (2002) ‘A seeded memetic algorithm for large unit commitment
problems’, Journal of Heuristics, Vol. 8, No. 2, pp.173–195.

Vesterstrom, J. and Thomsen, R. (2004) ‘A comparative study of differential evolution, particle
swarm optimization, and evolutionary algorithms on numerical benchmark problems’,
Congress on Evolutionary Computation, 2004, CEC2004, IEEE, Vol. 2, pp.1980–1987.

 194 H. Sharma et al.

Wang, H., Wang, D. and Yang, S. (2009) ‘A memetic algorithm with adaptive hill climbing
strategy for dynamic optimization problems’, Soft Computing – A Fusion of Foundations,
Methodologies and Applications, Vol. 13, No. 8, pp.763–780.

Williamson, D.F., Parker, R.A. and Kendrick, J.S. (1989) ‘The box plot: a simple visual method to
interpret data’, Annals of Internal Medicine, Vol. 110, No. 11, 916p.

Yang, X.S. (2010) Nature-inspired Metaheuristic Algorithms, Luniver Press, UK.
Zhu, G. and Kwong, S. (2010) ‘Gbest-guided artificial bee colony algorithm for numerical function

optimization’, Applied Mathematics and Computation, Vol. 217, No. 7, pp.3166–3173.

